into account all the factors and physical parameters of container and fire, the studies conducted allow to determine the safe distance of the container to the flame of the fire depending on the intensity of the heat flow and degree of blackness of its surface, and also the distribution of temperature of the thickness of the wooden container wall, depending from the time, is investigated. The studies provide an opportunity to determine the time at which the critical temperature for handling ammunition will reach the inner surface of the container wall, which will prevent the risk of explosion and fire.

The temperature distribution of the thickness of the wooden container wall for the storage of ammunition, caused by the heat flux of the fire, was investigated. It is shown that the degree of blackness of the surface of the wooden container wall greatly affects the value of the temperature field. To research the intensity of the heat flux used Stefan-Boltzmann law. We used the Laplace transformation to research the temperature distribution of the thickness of the wall of the wooden container, depending on the degree of blackness of its surface. When modeling the heating process of a wooden container wall we used the second boundary condition.

Keywords: heat flow, degree of blackness, temperature, ammunition, wooden container.

UDK 623.5

О.М. Дробан, Е.Ф. Жогальський

Національна академія сухопутних військ імені гетьмана Петра Сагайдачного, Львів

ПІДХОДИ ДО ОЦІНКИ ЕФЕКТИВНОСТІ СТРИЛЬБИ ЗІ СТРИЛЬЦЬКОЇ ЗБРОЇ

У роботі авторами проводиться дослідження існуючих методів визначення ефективності стрільби зі стрільцької зброї. В умовах подальшого розвитку та переоцінення Збройних Сил України сучасними зразками зброєної матеріали часто піднімається питання щодо здатності параметрів оцінки ефективності застосування перспективних зразків стрільцької зброї та їх впливу на оцінювання нової зброї. Щоб ставити завдання забезпечення підходили такою зброєю, властивості якої забезпечували б уражения зазначених і функцій у різних умовах бойового застосування, властивості зброї тісно пов’язані з поняттям «вимоги до зброї». Вимоги виступають як бажані властивості, а властивості – як реалізовані вимоги. В свою чергу від властивостей зброї напряму залежить ефективність її застосування.

Постановка проблеми

У процесі переоцінення підходів Сухопутних військ Збройних Сил України новітніми зразками стрільцької зброї відбувається модернізація існуючої та прийняття на оцінювання нової зброї, що ставить завдання забезпечення підходи до зброєю, властивості якої забезпечували б уражения заданих цілей в різних умовах бойового застосування. Властивості зброї тісно пов’язані з поняттям «вимоги до зброї». Вимоги виступають як бажані властивості, а властивості – як реалізовані вимоги. В свою чергу від властивостей зброї напряму залежить ефективність її застосування.

Аналіз останніх досліджень і публікацій

Питанню дослідження ефективності стрільби зі стрільцької зброї присвячена велика кількість наукових праць. Теоретичні дослідження пов’язані з авторами Благонравовом А.А., Щерещевським М.С., Кириловим В.М. та багатьма іншими. У цих роботах детально розкривається порядок визначення ефективності стрільби зі стрільцької зброї. Однак сьогодні виника необхідність визначення бойової ефективності стрільцької зброї, оснащеної новітніми принципами пристосуваннями (коліматори та тепловізійні приціли), різноманітними додатковими пристосуваннями, а також при стрільбі по цілях у засобах індивідуального захисту.

Формулювання мети статті

Мета статті – аналіз існуючих підходів щодо визначення ефективності стрільби та методів розрахунку показників ефективності. Узагальнення основних критеріїв оцінки ефективності стрільби зі стрільцької зброї.

Виклад основного матеріалу

В деяких літературних джерелах автори поділяють всю сукупність властивостей зброї на дві групи: службово-експлуатаційні та виробничо-економічні. Але, на нашу думку, варто присудитись до них спеціалістів [5], які розділяють властивості зброї на чотири групи: бойові, конструктивні, службово-експлуатаційні та виробничо-економічні.

Під бойовими властивостями розуміється сукупність таких властивостей зброї, які
характеризують можливість вогневого впливу на противника при нормальному технічному стані і безвідмовній дії. Їх зазвичай розглядають з трьох сторін: потужність стрільби, маневреність і надійність дії зброї.

До конструктивних характеристик відносяться наступні: принципи схеми компоновки; конструктивні особливості окремих вузлів (тип автоматики, тип затвора і т.д.); розміри зброї в бойовому і похідному положенні; вага зброї; простота будови зразка.

Службово-експлуатаційні властивості повинні забезпечувати просту і зручну роботу з усіма механізмами зброї та безпеку стрільби, а також роботу автоматики і поводження зі зброєю в будь-яких умовах.

Виробничо-економічні властивості зазвичай оцінюються собівартістю, складністю і тривалістю процесу виготовлення та іншими показниками.

Суккупність властивостей зброї визначає показники її бойової ефективності. Одним із найважливіших з них є ефективність стрільби. Висока ефективність стрільби зразків стрілецької зброї підрозділу дозволяє виконувати поставлену ним вогневу задачу якісно, своєчасно і з найменшою витратою бойових матеріалів, і це в свою чергу впливає на успішне вирішення бойових завдань в цілому.

Ефективність стрільби називається ступінь відповідності результатів стрільби бойовій задачі, що поставлена [2, 3, 6]. Вона залежить від властивостей стрілецької зброї та умов бойового застосування.

До властивостей стрілецької зброї, що впливають на ефективність стрільби, відносять [4]: влучність стрільби, дієвість кулі по цілі, початкову швидкість куля. Умови бойового застосування зброї залежать від геометричних характеристик цілей (розмірів, форми цілі й т.д.), захищеності, маневреності, видимості цілі і відстані до неї.

З аналізу літературних джерел стає зрозумілим, що існує ряд підходів до оцінки ефективності стрільби зі стрілецької зброї.

Так, перший автор [1] у своїй роботі розглядає основні критерії ефективності стрільби з двох сторін.

1. У випадку ведення вогню по одиночній цілі:
 а) ймовірність ураження цілі.

 При стрільбі одним пострілом ймовірність ураження має вигляд

 \[W_1 = \frac{P_1}{\alpha} \]
 \((1) \)

 де \(P_1 \) – ймовірність влучення в ціль одним пострілом; \(\alpha \) – середнє необхідне число влучень для ураження цілі.

 При стрільбі чергою незалежних пострілів за умови, що від пострілу до пострілу ймовірності влучення зберігають постійне значення, ймовірність ураження приймає вигляд

 \[R_n = 1 - \left(1 - \frac{P_1}{\alpha}\right)^n \]
 \((2) \)

 Якщо всі постріли автоматичної черги незалежні, ймовірність влучення кожним пострілом різні і дорівнюють відповідно \(p_1, p_2, p_3, \ldots, p_n \), то ймовірність ураження визначається як ймовірність хоча б одного влучення

 \[R_n = 1 - \prod_{i=1}^{n} \left(1 - \frac{p_i}{\alpha}\right) \]
 \((3) \)

 де \(R \) – гарантована ймовірність ураження цілі;

 б) середній очікуваний розхід босприпасів на виконання бойової задачі (уроження цілі із заданим рівнем надійності).

 Якщо ймовірність ураження цілі не змінюється в процесі стрільби, а постріли незалежні, середній розхід босприпасів можна визначити за виразом:

 \[N = \frac{\lg(1-R)}{\lg(1-p_1)} \]
 \((4) \)

 де \(N \) – середній розхід босприпасів; \(p_1 \) – ймовірність ураження одним пострілом.

 Якщо стрільба ведеться з незалежними чергами в \(n \) пострілів кожна, а ймовірність ураження однією чергою \(W_n \), то справедливі вирази:

 \[s = \frac{\lg(1-R)}{\lg(1-W_n)} \]
 \((5) \)

 \[N = \frac{\lg(1-R)}{\lg(1-W_n)} \]
 \((6) \)

 в) середній очікуваний час на виконання бойової задачі.

 Середній очікуваний час на виконання бойової задачі \(T \) складається з часу на підготовку стрільби і часу на її виконання. В якості критерію ефективності приймають зазвичай розрахункову величину цього часу

 \[T = t_{n_1} + \left[t_{n_2} + (m-1)\frac{60}{N_c} + t_{n_3} \frac{n}{E} + t_{yr}nq_2\right]s, \]
 \((7) \)

 де \(t_{n_1} \) – час пошуку цілі; \(t_{n_2} \) – час наведення зброї в ціль; \(t_{n_3} \) – темп стрільби, постр/хв.; \(t_{n_3} \) – середній час зарядження (перезарядження), \(E \) – місткість (кількість патронів) магазину або стрічки; \(t_{yr} \) – середній час усунення затримки, \(q_2 \) – ймовірність появи затримки в роботі зброї; \(s \) – число черг.

 2. У випадку ведення вогню по груповій цілі:

 а) математичне очікування числа (відсотку) урежних цілей за стрільбу.

 Якщо групація цілі складається з \(m \) елементарних цілей, то математичне очікування числа урежних цілей

 \[M = W_1 + W_2 + W_3 + \ldots + W_m = \sum_{i=1}^{m} W_i \]
 \((8) \)

© О.М. Дробан, Е.Ф. Жогальський
де \(W_i \) — їмовірність ураження i-ї елементарної цілі.

Якщо всі елементарні цілі однакові та їмовірності їх ураження рівні, то маємо

\[M = mW \] \hspace{1cm} (9)

б) середній очікуваний розхід босприпасів на виконання бойової задачі (ураження не менше заданого числа цілей з визначеним рівнем надійності).

Якщо на ураження однієї елементарної цілі з їмовірністю \(W \) витримується \(N_i \) босприпасів, то їх загальний розхід буде складати

\[N = mN_i \] \hspace{1cm} (10)

в) середній очікуваний час на виконання бойової задачі

\[T = mT_1, \] \hspace{1cm} (11)

де \(T_i \) — час, необхідний для ураження однієї елементарної цілі.

г) їмовірність ураження не менше заданого числа цілей.

Якщо їмовірності ураження всіх елементарних цілей однакові і рівні \(W \), то розподіл їмовірностей ураження \(k \) цілей з \(m \) обстежених підпорядкується біноміальному закону

\[P_{k,m} = C_m^k W^k (1 - W)^{m-k}. \] \hspace{1cm} (12)

Наступний автор [2] використовує такі основні критерії оцінки ефективності:

1. При стрільбі по елементарній цілі — їмовірність ураження цілі.

2. При стрільбі по груповій цілі — середня значення та середнє квадратичне відхилення числа уражених елементарних цілей.

3. При стрільбі по площинному (лінійному) об’єкту:
 a) середнє значення та середнє квадратичне відхилення відношеної площі (довжинні) ураження об’єкту;
 b) їмовірність ураження не менше заданої відношеної площі (довжинні) ураження об’єкта.

4. Середня значення та середнє квадратичне відхилення витрати босприпасів. Ці критерії зазвичай розраховуються з урахуванням можливого корегування даних для стрільби.

Ефективність стрільби як властивість зброї піддається більш або менш точній кількісній характеристиці за допомогою так званого коефіцієнта ефективності стрільби або показника

dійності стрільби, який вибирається в залежності від цільового призначення зброї.

Основним показником або критерієм дійності стрільби вважається їмовірність ураження цілі. Для випадку стрільби по одиночній цілі вона має вираз

\[W = \sum_{m=1}^{n} p_{m,n} G(m), \] \hspace{1cm} (13)

де \(p_{m,n} \) — їмовірність отримання \(m \) влучень з \(n \) виконаних пострілів; \(G(m) \) — їмовірність ураження цілі за умови влучення в неї \(m \) куль (шарджів).

Для випадку стрільби по груповій цілі в вжиті показника ефективності стрільби приймається математично очікування числа уражених цілей за одиницю часу

\[M = \frac{n}{s} P_{l(s)}, \] \hspace{1cm} (14)

де \(n \) — бойова швидкострільність.

Наступні автори [4, 7] ефективність стрільби оцінюють такими показниками:

1. Ймовірність влучення в ціль.

2. Ймовірність ураження одиночної цілі.

3. Математичне очікування числа (відсотку) уражених фігур в груповій цілі.

4. Середній очікуваний розхід босприпасів на виконання вогневої задачі.

5. Середній очікуваний розхід часу на виконання вогневої задачі з урахуванням часу на підготовку до стрільби і час на стрільбу.

В [5] для оцінки ефективності стрільби використовуються наступні показники:

1. Ймовірність влучення в ціль (P)

\[P = \frac{50\% S_a}{c_a c_6}, \] \hspace{1cm} (15)

де \(S_a \) — площа цілі, \(m^2 \); \(c_a \) — величина серцевинної смуги розсіювання за висотою, \(m \); \(c_6 \) — величина серцевинної смуги розсіювання за бічним напрямком, \(m \).

\[P = P_a P_6 K, \] \hspace{1cm} (16)

де \(P_a \) — їмовірність влучення в нескінченно довгий смугу, що дорівнює висоті цілі; \(P_6 \) — їмовірність влучення в нескінченно довгий смугу, що дорівнює ширині цілі; \(K \) — коефіцієнт фігуровості цілі.

2. Ймовірність ураження цілі (W)

\[W = 1 - \left(1 - \frac{P}{V}\right)^n, \] \hspace{1cm} (17)

де \(P \) — їмовірність промаху; \(n \) — кількість пострілів; \(V \) — необхідне число влучень у ціль для її знищення.

3. Математичне очікування розходу босприпасів (N)

\[N = \frac{V}{P}, \] \hspace{1cm} (18)

© О.М. Дробан, Е.Ф. Жогальський
4. Математичне оцінювання витрати часу на
урахування цілі (T)

\[T = T_1 + T_2, \]
(19)
де \(T_1 \) – час на підготовку першого пострілу;
\[T_2 = \frac{N}{B}, \]
– час на стрільбу;
\(N \) – математичне оцінювання витрати босприпасів; \(B \) – бойова швидкісність зброї з
урахуванням режиму вогню.

Командування армії США [8] також пропонує
велику увагу визначенню ефективності застосування
стрілецької зброї. З цією метою розроблені численні
математичні моделі оцінки конструкції та
результатів бойового застосування наряду з
полігонними випробуваннями окремих зразків зброї.
Основними критеріями оцінки ефективності
стрілецької зброї при проведенні випробувань
різних зразків зброї американські військові
спеціалісти вважають наступні:
1. Суккупний час показу цілей (Tс), який
визначається як сума часу (у хвилинах) показу
кожної цілі до моменту влучення в ній, тобто

\[T_c = \sum_i T_{ci}, \]
(20)
де \(T_{ci} \) – час показу кожної цілі до моменту влучення
в ній (наприклад, від 0 до 15 хвилин); і – кількість
цілей.

Вважається, що при інших рівних умовах
зразк зброї, який забезпечує менший суккупний час
показу цілей, краще за інші, оскільки підрозділ, ним
озброєний, буде зазнавати менші втрати за такі
тип військового вогню.

2. Сумарне значення близьких промахів (у
метрах), яке визначається як

\[D_{np} = \sum_j D_{npj}, \]
(21)
де \(j \) – постріли, при яких промах не перевищував
2 метрів; \(D_{npj} \) – величина промаху при \(j \)-і постріл.
3. Кількість боскомплекту, що залишився
після виконання поставленого вогневого завдання, тобто

\[N_{bo} = \left(1 - \frac{N_p}{N_{bo}} \right) \cdot 100\%, \]
(22)
де \(N_p \) – кількість витрачених босприпасів; \(N_{bo} \) –
кількість босприпасів в боскомплекті.

Даний критерій спеціалістами армії США
вважається одним із найважливіших показників
порівняльної оцінки зразків стрілецької зброї.

Висновки

В результаті аналізу розглянутих підходів
можна зробити декілька висновків:
1. Для оцінки ефективності стрільби зі
стрілецької зброї наведені автори використовують в
основному наступні показники:
а) ймовірність влучення в ціль;
б) ймовірність ураження цілі;
в) середній розхіл босприпасів на виконання
вогневого завдання;
г) середня витрата часу на виконання завдання.
2. Визначення ефективності стрільби згідно з
існуючими методиками вимагає проведення великих
обсягів та достатньо складних математичних
розрахунків, а також числових статистичних
полігонних випробувань.

Основним завданням подальших досліджень є
вивчення оцінки ефективності бойового
зацікавленої стрілецької зброї з комірниками
(технологіями) прицілами та додатковими
пристроями, призначеними для підвищення
eфективності зброї.

Список літератури

1. Шереметський М.С. Ефективность стрельбы из
стрельного оружия / М.С. Шереметський, А.Н. Гонтар
Ю.В. Минаев. – М.: ЦНИИ информации, 1979. – С. 201–
200.
2. Федориков Н.М. Методы расчетов боевой
эффективности вооружения / Н.М. Федориков,
3. Кирилов В.М. Основания устройства и
проектирования стрелкового оружия: учебник для
слухательей училища / В.М. Кирилов. – Пенза: ПВАИУ,
4. Наставление по стрелковому делу / Под ред.
5. Баленко А.И. Оценка эффективности стрелкового
оружия / А.И. Баленко, В.Ф. Афанасьев // Система
оружия и винтовки техника. – Харьков: ХНУПС імені
6. Бабак Ф.К. Основы стрелкового оружия / Ф.К. Бабак.
7. Наставление по стрелковому делу. Основы
стрельбы из стрелкового оружия / Под ред.
8. Соколов Д. Оценка эффективности стрелкового
оружия / Д. Соколов // Зарубежное военное обозрение.

Рецензент: д.т.н., с.н.с. О.М. Куприненко,
Национальная академия сухопутных військ імені
гетьмана Петра Сагайдачного, Львів

Подходи к оценке эффективности стрельбы из стрелкового оружия

А.Н. Дробан, Э.Ф. Жогальський

В работе авторами проводиться исследование существующих методов определения эффективности стрельбы из стрелкового оружия. В условиях дальнейшего развития и переоснащения Вооруженных Сил Украины современными © О.М. Дробан, Е.Ф. Жогальський
In the process of further re-equipping units of the Armed Forces of Ukraine with the latest models of small arms, the modernization of existing weapons and the adoption of new weapons is taking place. This raises the task of providing divisions with such weapons, whose properties would ensure the defeat of the goals set in various combat conditions. A large number of scientific works are devoted to the study of this issue, in which the procedure for determining the effectiveness of small arms shooting is described in detail. Today it became necessary to determine the combat effectiveness of small arms equipped with the latest sights, various additional devices, as well as shooting at targets in the means of personal protection. In this paper, the methods of system analysis and comparison consider existing approaches to determine the effectiveness of shooting and methods of calculating performance indicators and generalize the main criteria for assessing the effectiveness of firing from small arms. As a result of the analysis of the approaches under consideration, the following conclusions were drawn: for the purpose of assessing the effectiveness of small arms shooting, indicators such as the probability of hitting the target, the probability of defeating the target, the average ammunition dispersion to fulfill the fire task, the average time spent on the task; Determining the effectiveness of firing in accordance with the existing techniques requires carrying out large-scale and sufficiently complex mathematical calculations, as well as numerous statistical testing of landfills. The main task of further research is to study the effectiveness of the military use of small arms with collimator (thermal) sights and additional devices designed to increase the effectiveness of weapons.

Keywords: weapon properties, evaluation criteria, efficiency parameters, probability.