ЦЕМЕНТ ДЛЯ ПРОТИРАДІАЦIЙНИХ УКРИТТIВ

У роботі дослiджено вплив хiмiчного складу цементу на захиснi характеристики бетону, з якого виготовлено екрануючий матерiал. Показано можливiсть використання в складi бетону цемента, який в процесi тверднення утворює бiльш кiлькiсть гiдратних сполук.

Ключовi слова: цемент, гiдратнi новоутворення, радiацiйне забруднення, захиснi характеристики

Постановка проблеми. Метою державної полiтики у сферi природної та техногенної безпеки, захисту населення i територiй вiд надзвичайних ситуацiй техногенного та природного харктуру є забезпечення гарантованого захисту життя i здоров'я людей, земельного, водного i повiтряного простору, об'єктiв виробничого i соціального призначення у допустимих межах показникiв ризику, критерiїв яких встановляються для конкретного перiоду розвитку з урахуванням вiтчизняного та свiтового досвiду за цей перiод. У цьому аспектi набувають своєї практичної вагi питання прогнозування та запобiгання надзвичайних ситуацiй техногенного характеру. Свiтовий досвiд, a також досвiд нашої держави показує, що ризикiйського та мирного часу значною мiрою схожi мiж собою, а методи захисту населення i зовнiшнього середовища практично iдентичнi. На надзвичайних ситуацiях техногенного характеру, на їх виникненнi та локалiзацiю найбiльше впливає людський чинник. Людина постає в двох iпостасях: як чинник виникнення надзвичайної ситуацi, таких її запобiгання. У зв'язку з цим великої значення набуває пiдготовка фахiвцiв у сферi радiацiйного, хiмiчного та бiологiчного захисту, a також розробка матерiалiв, якi дають змогу покращити захиснi характеристики споруд, що i стало метою наших дослiджень.

Аналiз останнiх дослiджень i публiкацiй. Серед спосiбiв i засобiв захисту населення вiд чинникiв рiзного характеру ураження є укриття населення у захисних спорудах. Захиснi споруди - це iнженернi споруди, якi спецiально призначенi для захисту населення вiд небезпечних наслiдкiв аварiй i катастроф техногенного та природного харктуру, a також зброй масового ураження [1].

Згiдно з [2] захиснi споруди класифiкуються за такими ознаками:
a) за захисними властивостями:
- сховище;
- protiradiatsionne ukritytia (PRU);
- простi ukritytia;
b) за призначенням:
- для захисту населення;
- для розмiщення органiв управлiння;
- за мiсцем розташування:
- вбудованi (в пiдвалному або напiвпiдвалному примiщеннi);
- окремо розташованi;
- за термiнами будiвництва:
- завчасно збудованi (до надзвичайної ситуацiї);
- швидко спорудженнi (пiд час надзвичайної ситуацiї).

У свою чергу сховища класифiкуються за захисними властивостями, за мiсцем розташування, за забезпеченням фільтровентиляцiйним обладнанням, за часом спорудження.

Ступiнь захисту сховищ встановлюється за їх призначенням, мiсцем розташування, характером виробничої дiяльностi людей, що iкриваються, та iнших даних. Вiн визначається Державними будiвельними нормами ДБН В2.2.5-97.

Зa мiсткiстю (чисельнiстю людей, що iкриваються) сховища подiляються на: мали - до 600 чол., середнi - вiд 600 до 2000 чол., великi - бiльше 2000 чол. Мiсткiсть сховищ визначається сумою мiсць для сидiння (на першому ярусi) та лежання (на другому i третьому ярусах).

Наприклад, видом захисних споруд є протирадiацiйне укриття (PRU). Вони забезпечують захист людей вiд зовнiшнього i нейтрального випромiнювання i безпосереднього потрапляння радiоактивного пiду в органи дихання, шкiру та одяг. При розташуваннi в зонi можливих iслiбших руйнувань ПРУ захищає i вiд ударної xвiлi з ΔP = 20 кПа, уламкiв руйнувань будiвель i безпосереднього потрапляння на шкiру та одяг людей краплянi отруйних речовин та aerozoli бактерiальних zасобiв [3].

За ступенем захисту вiд радiоактивного випромiнювання (ступенно послiблення радiоактивного випромiнювання) протирадiацiйнi укриття подiляють на групи i оцiнюються коефiцiєнтом послiблення радiацiї Квіск, який показує у скiльки разiв рiвень радiацiї на вiдкритiй

© Л.Я. Парашук
місцевості на висоті 1 м більше від рівня радіації в укритті. Коекфіцієнт захисту ПРУ залежить від типу укриття, місця розташування, категорії розміщених в них людей. Укриття обладнують з розрахунку на найменший необхідний коекфіцієнт послаблення. Вони обладнують насамперед у підвальних поверхах будинків і споруд: саме Кпас, має максимальне для всієї споруди значення. Так, підвищі 2 і 3-х поверхових кам'яних будівель послаблюють радіацію в 200–300 разів, середня частина підвалу кам'яної будівлі в кілька поверхів – у 500 – 1000 разів, підвищі в дерев'яних будівках – в 7-12 разів [4].

Природні радіоактивні речовини та штучно синтезовані ізотопи впливають на живі организми потоками α-, β- та γ-випромінювання. Перші два характеризуються низькою проникною здатністю, а треті (є потоком сіонів та нейтронів), рухаючись зі швидкістю світла, володіють великою проникною здатністю. Найбільший ефект поглинання енергії нейтронів відбувається під час ударення їх з частинками, близькими за масою. Механізм полягає в тому, що при зіткненні енергія нейтрона розподіляється приблизно порівно між обома частинками, і чим більше таких зіткнень, тим більша втрата швидкості, а відповідно, більшою є захисна здатність матеріалу. Тому найефективнішим є сповільнення нейтронів в речовинах, що містять воду [5].

У зв'язку з цим метою даної роботи є дослідження новітніх будівельних матеріалів, а саме цементів, які в процесі тверднення утворюють велику кількість гідратних сполук для використання в будівництві протирадіаційних укріплень.

Основна частина. Головним будівельним матеріалом, який використовують під час зведення ПРУ для захисту від нейтронного та γ-випромінювання є особливо важкий та гідратний бетон. У цьому випадку цемент відіграє роль генератора гідратних сполук, що поглинає нейтрони, а заповнювачі поглинають γ-випромінювання.

Як заповнювачі використовують барит, залізні руди, металобрухт.

Барит – барію сульфат (BaSO₄) – дуже поширений в природі мінерал білого кольору. Його густина = 4500 кг/м³, границя міцності при стиску – близько 50 МПа. Густина бетону на баритовому заповнювачі становить 3800 кг/м³.

Магнетит (магнітний залізник) – слабокохлесна зализна руда (Fe₃O₄) густиною 4500...5000 кг/м³ та границею міцності при стиску до 200 МПа. Густина бетону на піскі й щебені із магнетиту складає 4000 кг/м³.

Гематитові руди містять червоний залізник (Fe₂O₃), густина гематиту – до 4300 кг/м³, а бетону на його основі – до 3500 кг/м³.

Лімоніт (бурий залізник) можна представити як (2Fe₂O₃·3H₂O), тобто може використовуватись як засіб захисту від γ-променів, так і від нейтронів. Густина лімоніту – 3500 кг/м³, лімонітового бетону – 2600...2800 кг/м³, тобто лімонітовий бетон трохи важчий від звичайного, однак зв'язаної води в ньому може міститись вдвічі більше.

Для отримання особливо важких бетонів густиною 5000...7000 кг/м³ застосовують чавун (ρ=7500 кг/м³) у вигляді дробу, крихти і скрапу (крупного брухту), а також сталю (ρ=7800 кг/м³) у вигляді відрізків, відходів від штампованих виробів, дробленої стружки [6].

Крупність заповнювачів для захисних бетонів визначається масивністю конструкції, що бетонується, і приймається максимально можливо. Зерновий склад заповнювачів підбирають з таким розрахунком, щоб виконувала більше наситити бетон важким заповнювачем; чим важчим є отриманий бетон, тим меншою може бути товщина споруди.

Хіміко-мінералогічний склад цементу для захисного бетону повинен бути таким, щоб при твердненні формувалися гідратні новоутворення з найбільш можливим вмістом хімічно зв'язаної води. Відомий досвід використання глиноземистих, сульфатшлакових та розширюваних цементів, а також магнезіального зв'язного, що називають цементом Сореда [7].

Осікльки вищеназвані заповнювачі не мають родовищ в нашем регіоні, а також є дорогими, то дослідження проводили на цементах ПЦ II/А-Ш M400 та розширюного РЦВ-5 (ТУ У 26.5-0207101-141-2010).

Особливості процесів гідратації в’язкого, досліджували з допомогою фізико-хімічних методів аналізу, зокрема рентгенографії. Як видно з рис. 1, під час тверднення цементу (а) на дифрактограмах фіксуються лінії продуктів гідратації: портландиту (d/n=0,263; 0,493 нм) та етрингиту (d/n= 0,561; 0,973 нм), а також кальцит (d/n= 0,302 нм), інтенсивність яких до 90 доби тверднення поступово зростає. Разом з тим, дифракційні максимуми негідратованого цементу (d/n= 0,218; 0,260; 0,277 нм) в процесі гідратації закономірно зменшуються.

Використання РЦВ-5 характеризується помітним збільшенням рефлексів кальцію гідроксилу, етрингиту та появою в зазначені терміні тверднення (на 28 добу) гідроломіномату типу Ca₃Al₂O₆ (d/n= 1,073 нм). Присутність надішкової кількості Са(OH)₂ споней формуванню вищовказаних призматичних кристалів первинного етрингіту та кальціту, які утворюють міцніший каркас і забезпечують інтенсивний набір фізико-механічних характеристик, а також підвищує кількість хімічно зв’язаної води.

© Л.Я. Парашук
Рис. 1. Дифрактограми цементного каменю на основі ПЦ II/А-ІІІ (а) та розширного РЦВ-5 (б), що твердніли: 1 - 7 діб; 2 – 28 діб; 3 – 90 діб

Кількісний склад продуктів гідратації досліджуваних цементів встановлений з допомогою ДТА (рис. 2).

Зменшення маси в області температур 20-140 °C (табл. 1) можна пов’язати з виділенням залишкової фізичної вологи та частково хімічно зв’язаної води. Гідратну воду у цьому інтервалі втрачають присутні в обох зразках низькоосновні гідросилікати типу CSH (ІІ) та етрингіт. Втрата маси зразків в області температур 130-330°C відповідає продовженню ступінчастої дегідратації гідросилікатів, етрингіту та початку розкладу гідроалюмінатів. Зменшення маси в області температур 310-450 °C пов’язується з остаточним розкладом гідросилікатів та продовженням розкладу гідроалюмінатів, присутніх в шарі, наближенному до гранул СаО. Зразок I характеризується більшою втратою маси в даному температурному інтервалі, що пояснюється більшим вмістом в ньому високоосновних гідроалюмінатів. Зменшення маси зразків на температурному відрізку 440-550 °C відповідає розкладу портландцементу. Подальша втрата маси в температурній області 550-1000 °C, пов’язана з остаточним розкладом гідроалюмінатів та кальціту.

Таблиця 1

<table>
<thead>
<tr>
<th>Досліджуваний цемент</th>
<th>Температурний інтервал, °C</th>
<th>Втрата маси, Δm, %</th>
<th>Ендоефект, Tmax, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Розширенний РЦВ-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 130</td>
<td>2,25</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>130 - 310</td>
<td>2,5</td>
<td>Не виражений</td>
<td></td>
</tr>
<tr>
<td>310 - 450</td>
<td>1,125</td>
<td>Не виражений</td>
<td></td>
</tr>
<tr>
<td>450 - 550</td>
<td>1</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>550-1000</td>
<td>5,0</td>
<td>810</td>
<td></td>
</tr>
<tr>
<td>Загальні втрати</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 1000</td>
<td>11,875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПЦ II/А-ІІІ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 140</td>
<td>2</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>140 - 330</td>
<td>2</td>
<td>Не виражений</td>
<td></td>
</tr>
<tr>
<td>330 - 440</td>
<td>0,75</td>
<td>Не виражений</td>
<td></td>
</tr>
<tr>
<td>440 - 550</td>
<td>0,75</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>550-1000</td>
<td>2,9</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>Загальні втрати</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 1000</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

З метою визначення ефективності захисту необхідно провести експериментальні вимірювання зміни інтенсивності випромінювання (у бекерах) після проходження через бетонні зразки, виготовлені на основі цементу ПЦ II/А-ІІІ та РЦВ-5. Для цього була використана установка, схема якої наведена на рис. 3.

За джерело радіоактивного випромінювання 1 використано радіоактивну речовину (137Cs), яку поміщали до свинцевого контейнера з невеликим отвором. Радіоактивне випромінювання спрямовували на бетонні зразки-куби одинакової довжини. Інтенсивність випромінювання після проходження кубів вимірювали за допомогою газорозрядного лічильника Гейгера-Мюллера 3. Кількість зареєстрованих частинок радіоактивного випромінювання підраховував лічильник електричних імпульсів 5.
88

Військово-технічний збірник 2(11)/2014

Рис. 3. Схема експериментальної установки для визначення лінійного коефіцієнта поглинання радіоактивного випромінювання:
1 – джерело радіоактивного випромінювання;
2 – поглинаючий бетон; 3 – лічильник Гейгера-Мюллера;
4 – джерело живлення лічильника Гейгера-Мюллера;
5 – лічильник електричних імпульсів.

Користуючись законом послаблення вузького моноэнергетичного пучка γ-квантів при проходженні через речовину обчислено лінійний коефіцієнт поглинання бетонними зразками різного складу та отримано середні результати з відхилами. Їх значення становлять 0,124 та 0,162 для візирів на основі ПЦ І/А-Ш та РЦВ-5 відповідно, що корелює з результатами вищенаведених фізико-хімічних досліджень.

Висновки

З вищенаведених результатів видно, що хімічний склад в’яжучого, яке входить до складу бетону має значний вплив на захисні характеристики екрануваного матеріалу. Зміна типу цементу зі звичайного ПЦ І/А-Ш на розширений РЦВ-5 за рахунок формування більшої кількості гідратних сполук в процесі гідратації дає можливість збільшити лінійний коефіцієнт поглинання радіаційного потоку майже на 30%, таким чином зменшуючи товщина захисного шару.

Список літератури


Рецензент: д.т.н., проф. Х.С. Соболь кафедра автомобільних шляхів Національного університету «Львівська політехніка», Львів.

Цемент для противорадиационных убежищ

Л.Я. Парашук

В работе исследовано влияние химического состава цемента на защитные характеристики бетона, из которого изготовлен экранирующий материал. Показана возможность использования в составе бетона цемента, который в процессе твердения образует большое количество гидратационных соединений.

Ключевые слова: цемент, гидратационные соединения, радиационное загрязнение, защитные характеристики.

Antiradiation shelter cement

L. Parashchuk

In this case examines the influence of the chemical composition of cement on the protective properties of concrete, of which the screening material producing. Show the possibility of use in concrete cement that forms larger number of hydrated compounds during hardening and structurization processes.

Key words: cement, hydrated formations, radiation pollution, protective properties.

© Л.Я. Парашук