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DEMODULATED DYNAMICS AND OPTIMAL NOISE FILTERING FOR CORIOLIS
VIBRATORY GYROSCOPES

Analysis of the Coriolis vibratory gyroscopes sensitive element dynamics in terms of the amplitude-phase
variables led to the proper transfer functions of such inertial sensors, where angular rate is an input. Obtained
transfer functions were simplified for the several special cases and then used to derive poles, amplitude, and phase
responses of CVG. Performance of the simplified transfer functions is also analyzed and compared to the accurate
numerical model of the sensitive elements dynamics. Obtained transfer functions were then used to derive static
(Wiener) and adaptive (Kalman) optimal filters of stochastic sensor noise for Coriolis vibratory gyroscopes.
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Introduction

Coriolis vibratory gyroscopes (CVGs) received
significant amount of interest from the both scientific
and engineering communities in view of the possibility
to fabricate sensitive elements of such gyroscopes in
miniature form by using modern microelectronic mass-
production technologies. In this case CVGs are
frequently referred to as MEMS (Micro-Electro-
Mechanical-Systems) gyroscopes [1]. Apart from
numerous civil applications this type of inertial sensors
is also considered as a key element in guidance systems
for different kinds of munitions due to its low-cost and
high survivability, which is essential for the combat
systems. Being based on sensing of Coriolis
acceleration due to the rotation in oscillating structures,
CVGs have a lot more complicated mathematical
models, comparing to the conventional types of
gyroscopes. One of such complication is a result of the
useful signal proportional to the external angular rate
being modulated with the intentionally excited primary
oscillations [2-4]. From the mathematical modeling
point of view, this leads to necessity to “demodulate”
the solution in terms of the sensitive element
displacements to obtain practically feasible insights
into CVG dynamics and errors. From the control
systems point of view, conventional representation of
CVGs incorporates primary oscillation excitation
signal as an input to the dynamic system, and unknown
angular rate as a coefficients of its transfer functions
[4]. As a result, dynamics of CVGs has been analyzed
mainly in steady state, while transient process analysis,
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for example, has been omitted due to its apparent
complexity.

This paper describes new method of CVG
dynamics analysis by means of complex amplitude-
phase variables, which enables having angular rate as
an input to the dynamic system. As a result, new
system transfer functions of CVG in demodulated
signals were derived and used for analysis of its
dynamics.

CVG motion equations

Sensitive element of the most CVGs can be
represented as a massive element (proof mass m, in
Fig. 1) attached to the basis by means of set of springs
and the decoupling frame m .
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Fig. 1. Generalised CVG sensitive element

Here springs may allow either translational or
rotational motion of the proof mass and decoupling
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frame. Primary oscillations of the sensitive element are
excited along the axis X;, and secondary oscillations

of the proof mass due to the angular rate Q are
detected along the axis X .

In the most generalized form, motion equations of
the CVG sensitive element both with translational and
rotational motion could be represented in the following
form:

Xl + 2C1k1X1 + (k12 — dlﬂz)xl +
g1k, +d30xp = g
Ko + 26k Xy + (k5 —dQ%)x;

— 9o~ =0, C

@

Here x and x, are the generalized coordinates that
describe primary (excited) and secondary (sensed) motions
of the sensitive element respectively, k; and k, are
the corresponding un-damped natural frequencies, &;
and &,

coefficients, ©Q is the measured angular rate, which is
orthogonal to the axes of primary and secondary
motions, g; and g, are the generalized accelerations due

are the dimensionless relative damping

to the external forces acting on the sensitive element.
The remaining dimensionless coefficients are different
for the sensitive elements exploiting either translational
or rotational motion. For the translational sensitive
element they are dy=d, =1, dg=m,/€y+m, ,
g1=2my/€y+m, , g, =2, where my and m, are
the masses of the outer frame and the internal massive
element [5]. In case of the rotational motion of the
sensitive element, these coefficients are the functions
of different moments of inertia (for greater details see
[5] as well). In the presented above motion equations,
the angular rate is included as an unknown and variable
coefficient rather than an input to the double oscillator
system. Conventional control systems representation of
such a dynamic system is shown in Fig. 2.
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Fig. 2. Conventional representation of CVG dynamics in
control systems
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In order to identify the angular rate one must
detect secondary oscillations of the sensitive element
and measure its amplitude, which is approximately
directly proportional to the angular rate, and phase,
which gives the sign. Compatible with the most control
problems CVG dynamics representation should have
the unknown angular rate as an input and its measured
value as an output.

In order to make the equations (1) suitable for to
the transient process analysis we must make the
following assumptions: angular rate is small comparing
to the primary and secondary natural frequencies so that

kZ >>dQ?, k3 >>d,02, 2

and rotational and Coriolis accelerations acting along
primary oscillation axis are negligible in comparison to
the accelerations from driving forces

919 + A3 << 3

Taking into considerations assumptions (2) and

(3), motions equations (1) could be simplified to the
following form:

{5{1 +2C5ke X +kixg = C @

5(.2 + 2@2'(2).(2 + k22X2 = ng)'(l + QX]_.

Here we also assumed that no external driving
forces are affecting the secondary oscillations, which
means that g, € =0.

System of equations (4) is now perfectly suitable
for further transformations towards the desired
representation in terms of the unknown angular rate.

Amplitude-phase motion equations

As has been shown in [5], by means of a proper
chosen phase shift of the excitation voltage applied to
the sensitive element, the excitation force could be
shaped to the perfect harmonic form. Using exponential
representation of complex numbers, such a driving
force qq (: could be represented as

o = tgo sin( o) = Imfcgee ' ©)

Here o is the excitation frequency given in radians
per second, g is the constant excitation acceleration

amplitude. Non-homogeneous solutions of the motion
equations (1) or (4) for primary and secondary
oscillations are represented in a similar form

x C= |m{A_L(t)ej°’t}, AC=Ap (t)eJ'(mo(t) ,
X, C=Im{A, (t)e '}, A C= Ay (t)e o200

where Ajg and Ay, are the primary and secondary

(6)

oscillation amplitudes, ¢ and ¢, are the corresponding
phase shifts relatively to the excitation force. Although
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these quantities are real (non-complex), they are combined
in complex amplitude-phase variables A and A,.

Substituting expressions (5) and (6) into equations
(4) results in the following motions equations in terms
of the complex amplitude-phase variables rather than
real generalized coordinates:

A +2(Ck + jo)A + (K —0® +2jok,E)A =
= Co»
A +2(5 K, + jo)A, + (K2 —0® +2jok,C,)A, = (
= (jog,Q+Q)A +g,AQ
Equations (7) describe variations of the amplitude
and phase of the primary and secondary equations in

time with respect to the unknown non-constant angular
rate Q=Q(t). This allows conducting analysis of the

7)

Coriolis vibratory gyroscope dynamics without constraining
the angular rate to be constant or slowly varying.

Analyzing system (7), one can see that the first
equation can be solved separately from the second one.
After homogeneous solutions of the first equation
faded out, only non-homogenous solution remains. In
this case, amplitude of the primary oscillations is

A= G0 ®)

k? -2 +2jkC0

and it is constant in time, yielding A = A =0. Indeed,

most of the time measurements of the angular rate are
performed when primary oscillations have already
settled. As a result, only equation for the secondary
oscillations remains, in which the complex primary
amplitude A is just a constant parameter given by (8):

Ay +2(Coka + j0) Ay + (k3 —0? +2jokaly) Ay =

. - 9)
=(jogrQ+Q)A.

Equation (9) now describes amplitude-phase of
the secondary oscillations with respect to the settled
primary oscillations.

System transfer functions

Having CVG sensitive element motion equation
in the form (9), allows analysis of its transient processes
in amplitudes and phases with respect to arbitrary
angular rates applied to the system. Application of the
Laplace transformation to the equation (9) with respect
to zero initial conditions for all time-dependent
variables results in the following expressions:

[(s+ jo)® + 20k (s + jo) +k3 1A (5) =

: (10)
= Auls + jgo0]Q(s).

Solution of the algebraic equation (10) for the
secondary amplitude-phase Laplace transform is
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MtI00) o

(s+ jo)? +28 ko (5 + joo) +k2

Ay (s) = (11)

Considering the angular rate as an input, the system
transfer function for the secondary amplitude-phase is

_A(s)
Wz(S)——Q(S) =
_ Py (s+ jgo0) _
(s+ jo)2 + 28Ky (s + jo) +k3
_ Gio (S + J920)
[(s+ jo)® +28oKy (s + jo) +k3]
1

X .
[kf — 02 +2 jok&]

(12)

X

One should note that transfer function (12) has
complex coefficients, which results in the complex system
outputs as well. Although it is somewhat unusual, it
still enables us to analyse CVG dynamics and transient
processes due to the angular rate in an open-loop
dynamic system.

Amplitude and phase responses

In order to calculate the amplitude response of the
system using transfer function (12), Laplace variable s
must be replaced with the Fourier variable jA, where

L is the frequency of the angular rate oscillations:

. i A
W (i) = — JChoz( +92€0) N
[k — (A + o) +2jCky (A +w)]
1
X .
[k — 02 +2 jol k]

(13)

Absolute value of the complex function (13) is the
amplitude response of the secondary oscillations amplitude
to the harmonic angular rate, and the corresponding
phase of the complex function is the phase response [5]:

AQY) = G0 (A +920) x
[(kZ - (L +©))% +453K2 (1 + 0)2]2
1

X

[(kf - 0?)? + 4@12k12w2]%
o) = tan YA K2 — (A + 0)?][k? - 0?]-
~ At akkop GG po(h+ o),
A =2ksCr (h+ @)k —0%) +
+kyGo(ky —(h+ )]

(14)

One should note that, assuming constant angular
rate (A=0) in the expressions (14), the well known
expressions ([4]) for the amplitude and phase of the
secondary oscillations could be obtained.
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Analysis of the expressions (14) shows that effect
from the oscillating angular rate is practically equivalent
to shift of the excitation frequency ® by the frequency
L of the angular rate. This causes CVGs, especially
those with high Q-factor, to loose its resonant tuning,
which in turn results in significant variation of its scale
factor (dynamic error) and thus limited bandwidth.

System poles and slow motion

Both stability and unit-step transient process
quality depend on position of the system poles in the
real-imaginary plane. Poles of the transfer function
(12) are as follows:

s1p = kol + jkoy1-C3 — jo - (15)

Analysing expression (15), it is easy to see that
CVGs are inherently stable. Indeed, if the relative
damping coefficient £, <1, then real parts of the poles

are —k,C, <0. If the relative damping coefficient

€, >1, then real parts are —k, (&, ++/C2 1) <0.

One should note, that each of the poles (15)
corresponds to different kinds of motion of the sensitive
element in terms of the amplitude-phase variables. Most
essentially, actual amplitude of the secondary oscillations
is mainly defined by the low frequency pole, while
effect from the high frequency pole can be neglected,
since it will be removed during demodulation process.
In other words, predominant behaviour is a slow
variation of the amplitude and phase. Neglecting the
second order derivative in the equation (9) yields

2(Coky + jo) Ay + (K — 07 + 2 jok,C,) Ay =
= (jog,Q+ Q)All

and the corresponding angular rate transfer function
becomes

Wy (s) = (1210(5;r 1920) y

[2C2k25 +k2 -0 + j2(1)(€2k2 +S)]

) (16)
X 2 2 .
[ki —0” +2joki& ]
Single pole of this transfer function is

2 2 ;

s, __ky—o"+2jelk, . (17)

2(Cokz + jo)

Complex transfer function (16) is simpler in
comparison to the function (12) and could replace it in
certain specific problems when slow oscillations
analysis is required.

Real and imaginary transfer functions

While simulating dynamics of CVG based on the
complex amplitude-phase transfer functions (12) or
(16) one could have problems dealing with complex
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coefficients of these transfer functions (for example,
while simulating CVG using Simulink/Matlab). One
way to avoid this problem is to consider real and
imaginary parts of complex amplitude as separate
signals, which are then combined together to produce
real amplitude and phase. In order to obtain transfer
functions for such signals let us represent primary and
secondary amplitudes as

A =AR+ ]l Ap=RPop+ k. (18)

Primary oscillations components can be easily
found by means of substituting expressions (18) into
formula (8) thus yielding

_ Gl -0?)
(K —0?)® +4k{ o’
200 joki&y _
(kZ —02)? + 4k{ 2 0?

AR

(19)
Ay =-

At the same time, substituting expressions (19)
into the motion equation (9), and applying Laplace
transformation with zero initial conditions gives

(k3 =% +2kyC s+ 52) Ay p () —

—=20(ky Gy +5) Ay (5) = (A1gs — 411 8,0)Q(s),
(k2 - 0% + 2kyCos +52) Ay (5) + '
+20(kyCy +8) Ay (s) = (A5 + A g gr®)CX(s).

(20)

Resolving algebraic system (20) for the unknown
real and imaginary parts of the secondary complex
amplitude results in

AIRMRR(S) + Ay Mg (5) o(s)
P(s) ’

Pgy (5) = ArM |R(SF))(+S)A1| My (s) ).

AR (s) =
(21)

Here the numerator polynomials from the real and
imaginary parts of primary amplitudes are given by the
following expressions:

M g (s) = s(k3 +2kyCps +57) —
—COZ(S —2g,(s +k,C5)),
Mg (s) = o[ 2s(s + k,C5) —
_gz(kzz ~0° +2k2§25+52)],
My (s)=20"g, (s +kGp) +
+5(k3 — 0% +2k,Cs5 +57)],
Mg (s)= OJ[gz(kz2 ~0’ +2k,Cys +S2) -
—2s(s +kC5)],
P(s) =4(s + kr(, ) 0 +

+ (k3 — 0% +2k,C5+57)%

(22)
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Obtained expressions (19), (21), and (22) allow
analysis of CVG dynamics in control system without
necessity to involve complex-valued signals.

Simplified transfer function and its
accuracy

There is quite an important special case, when
complex transfer functions transform to a simple real-
valued one. Assuming equal primary and secondary
natural frequencies (k; =k, =k ), equal damping ratios

(G =C2=C), primary

m:kwll—zgz ), and constant angular rate (Q~0),
one can easily obtain

00 = 92010 Vl_ 2C2 Q. (23)
4k (L-6%)(s + k)
In this case, secondary amplitude (23) is related to

the input angular rate by means of the following
transfer function

resonance excitation (

Wag (s) = 2200) _ G092 V1267 _ (24)
DPIT06) T ke 1-c?) (s + k)

As one can see, the simplified CVG transfer
function (24) describes a simple first-order system with
exponential (non-oscillatory) transient process.

Finally, transfer function (24) relates angular rate
to the secondary oscillations amplitude. However, more
appropriate would be to consider transfer function
relating unknown input angular rate to the measured
angular rate, which can be easily obtained from (24) by
dividing it on the steady state scale factor. The
resulting transfer function is

kg
s+kg

W(s)= (25)

Somewhat qualitatively similar results were obtained
from the different considerations in [6]. Needless to
say, that possibility to use transfer functions (24) and
(25) for “non-tuned” CVG as well is highly desired.
Therefore let us evaluate accuracy of the function (24)
in representing general case of CVG dynamics.

In order to do that, let us compare transient
processes produced by the simplified transfer function
and by a numerical solution of the equations (1) with
subsequent demodulation. As a performance criterion
the following integral function is used:

.
J(3k,86) = [[Ag (t) - Ago (D] dlt . (26)
0

Here 8k =k, /k; is the ratio of the natural
frequencies, 8, =C,/&; is the ratio of the relative
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damping ratios, A;o (t) is the demodulated secondary

amplitude produced by the “realistic” model.

Graphic plot of the functional (26) is shown
below in the figure 3.

Here the central darker area corresponds to the
perfectly tuned device (dk =1, 8 =1). One can see,

that wide range of sensitive elements with varying ratio
of the natural frequencies and ratio of relative damping
still could be represented by the transfer function (24)
with acceptably low integral error (26).

110

Fig. 3. Integral error of the transient process
representation

Stochastic unobserved noises

Accuracy of CVG is usually limited by different
kinds of noises and systematic errors. Especially
micromachined kinds of CVG are essentially affected
by a thermal mechanical noise [6, 7]. Performances of
CVGs are affected by unobserved stochastic influences
in two ways: as a “sensor noise”, which is added to the
output of the system, and as a “process noise” or
disturbances, which are added to the input of the system.
The latter could be also treated as “rate-like” disturbances.
Such system is shown in the figure 4.

iy 0]

2 W(s) | Gls) Hi»

Fig. 4. Process and sensor noises in CVG

Here W(s) is the system transfer function given

by (25), v is the stochastic disturbance, ¢ is the sensor
noise, G(s) is the transfer function of a static optimal

filter (yet to be derived), Qg is the actual angular rate,

Q is the angular rate measured by the CVG with the
filter, which in ideal case is equal to the actual angular
rate Qg . Since in general disturbances are by no means

different from the actual angular rate, let us therefore
concentrate on the sensor noise removal.
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Assuming that CVG is installed on a moveable
object, such as aircraft or land vehicle, its power
spectral density can be represented as

o2B2

) (27)
B2 _g?

Sq(s)=

Here B is the moveable object bandwidth, and o
is the measure of the angular rate power factor.

Meanwhile, sensor noises can be assumed to be
either a white noise like with the following power
spectral density

So(5) =170, (28)
or a high-pass noise
2 2.2
Y°6°s
Se()=——5—=- (29)
o B2 _g2

Here y is the noise-to-signal ratio. Power spectral
densities (28) and (29) along with the angular rate
power spectral density (27) cover most of the present in
CVG cases of stochastic sensor noises. Nevertheless,
other specific spectral densities can be taken into
account and used in the presented below optimal filter
synthesis procedure.

Optimal Wiener filter synthesis

General algorithm of the optimal filter synthesis
for the system in Fig. 4 has been demonstrated in [8],
with respect to the stationary stochastic sensor noise.

Error of the system is defined as a difference
between the actual output of the system Q and the ideal
output, which is the given by the desired transformation
H(s) of the input as

SIQ—H(S)'Qo.

It is also assumed that signals Q and Qg are the
centered stochastic processes defined in terms of
system transfer functions and known spectral densities
of the input angular rate and sensors noises.

Performance criterion for the system is assumed
to be in the form of the following functional:

10

J=E{e"-e}== [Se(s)ds. (30)
e

Here S..(s) is the error spectral density, which

can be calculated from the system transfer functions
and signal spectral densities using Wiener-Khinchin
theorem [8] as follows:

See(s) =(GW —H)Sq(W.G, —H,) +
+ (GW _H)S(pQG* + GSQ(p (W*G* _H*) + (31)
+GS G,

© B.O. AnocTomniok

1(8)/2013
where asterisk designates complex conjugate, Sq, (S)

and S, (s) are the cross spectral densities between

input angular rate and additive sensor noise, which
assumed to be known.
By means of introducing new variables defined as

DD, =WS W, +WS 0 + S Wi + Sy,
IT, =R, Gy =IGD, (32)
T =TH(SWs +Sy0)Dst,

and substituting power spectral density (31) into (30),
first variation of the performance criterion (30) with
respect to the unknown filter related function Gy will

become
12
8] = T _[[(GO —T)38Gq + 8Ggx(Gg« — T+)]ds . (33)

—jOO

Minimum of the performance criterion (30) is
achieved when the first variation (33) turns to zero.
Apparently, this is achieved when

G=ITy+T,)D. (34)

Here T, is the integer part of the function T, and
T, is the part of the function T that contains only poles

with negative real parts (stable poles) and is the result
of the Wiener-Hopf separation procedure.

Using optimal solution (34) and spectral density
for the angular rate (27) we can now derive static
optimal filter functions for the two cases of the sensor
noise (28) and (29). Cross spectral densities between
angular rate and noise are assumed to be absent (
S(pQ (s)= SQ(p (s)=0).

After performing transformations according to
(32) and renormalizing to remove steady state error, the

optimal filter in case of the white sensor noise (28) is
found as

G(s) =[By1+ 7% (s +Ch)]/
/ys? + s\/y(Bzy +C2k2y +2CkB1+92 )+ (35)

+C_,kB\/1+y2 ].

In case of the high-pass sensor noise (29), optimal
filter is found in the following form:

B(s+Ck)

s2y +sCky(2B + Cky) + BEk (36)

Depending on which of the disturbance model is
found to be the most appropriate, either filter (35) or
filter (36) should be used.

One should note that obtained optimal filters (35)
and (36) are static, and being expressed in terms of

G(s) =
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transfer functions can be easily implemented using
simple analog electronics at a low-level integrated
circuitry. Contrary to static filtering, using filtering
based on Kalman filter algorithm require microprocessor,
which might not be feasible as in terms of cost
efficiency as well as not providing sufficiently small
high sampling frequency.

Let us now study performances of the obtained
optimal sensor noise filters by means of numerical
simulations of the realistic CVG. In order to obtain the
most realistic simulation results, equations (1) were
used to simulate sensitive element dynamics. Secondary
oscillations are then synchronously demodulated, and
“white” sensor noise is added. Input angular rate is
assumed to be in a form of square pulses. Results of
numerical simulations of the “white” sensor noise
filtering are shown in the figure 5.

15
1 MHHUW QE o MMM - “\_w d‘hw\ ““Hi‘
i | ‘

0.5 i I ‘

0T I “‘ Ui“\hw\ JLILS h‘w““ L

angular rate, rad/s

05 : : : : . : :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time, s
Fig. 5. Sensor noise filtering simulation
(dashed — input angular rate, grey — noised output, black —

filtered output)

These simulations were carried out for the y=0.1
and bandwidth of the angular rate B=3 Hz. One should
observe good performance of the synthesized filter.

Optimal Kalman filter synthesis

Despite the excellent performance of the Wiener
filter in case of the stationary stochastic noises and
disturbances, non-stationary noises still would require
to use adaptive Kalman filtering along with the
corresponding computational hardware.

Let us now demonstrate how to synthesize
adaptive Kalman filter using demodulated dynamics of
CVG. In order to implement Kalman filter we have to
derive difference model of the CVG dynamics in the
following form:

{xn =F - X1 +Wy_q,

Z,=C-Xpy+V,. S

Here X, is the sampled state vector X ={Q Q},
Z,, is the measured state vector, C =[1 0] is the state

measurement matrix, w, and v, are the process and

sensor noises respectively, and F is the state transition
matrix, which can be obtained using well-known ([9])
dependency

F=LY(I-s-A)™. (38)
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Here L1 is the inverse Laplace transformation,
A is the system matrix, which in case of the simplified
system representation (25) is given as

I L
5] -

Note, that input angular rate Qg in (39) is

represented as a random walk (integrated white noise),
which is the reason of zeroes in the second row of the
matrix A . Substituting (39) into (38) results in

Kot 4kt
Foj® 0 e (40)
0 1

In order to verify state observability for the simplified
model (39), let us calculate observability matrix as

C 1 0
Qo = C.E T lekat gkt | (41)

Observability matrix (41) has full rank equal to 2,
which satisfies condition for the state observability.

In order to verify Kalman filter performance the
same realistic CVG dynamics simulation is used, as in
the previous simulations.

Kalman filter block from the Signal Processing
Blockset (Simulink/Matlab) is attached to the already
demodulated output rate. Input angular rate has shape
of squared pulses with 1 rad/s amplitude. White noise
is added to the output rate prior to be fed to the Kalman
filter block. Results of the numerical simulations are
shown in Fig. 6 and 7.

15 i i i ;

AL il L
1 H‘UH‘”W}“ il \“\ i “\ s H\‘H“‘ \“\‘\‘ it
i

05 i I

angular rate, rad/s

g
AR

ol il th‘ UHIAY

: : :
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4
time, s

0.5

Fig. 6. Angular rate measurements
(grey — noised output, dotted — actual output without noise,
solid — output estimation)

state estimation, rad/s

0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4
time, s

Fig. 7. State estimations over time
(solid —input angular rate, dashed — output angular rate)
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The following parameters of the CVG were used
in simulations: k =500Hz, £=0.025. Zero initial

conditions were chosen for the state vector and identity
matrix has been used as an initial for the error covariance.
Other parameters of the filter are as follows:

o- 0 0
“lo 2.107®

] R=0.01.

Analyzing graphs in Fig. 6 and 7 one can see, that
added sensor noise has been successfully removed
from the output, while input angular rate has been
estimated with some errors, however closer to the
actual square pulse shape than measured output.

Conclusions

Presented above analysis of CVG dynamics using
amplitude-phase complex variables resulted in obtaining
system transfer functions, where measured angular rate
became an input rather than parameter of the motion
equations. This enables analysis of the CVG dynamics
in already demodulated signals. More importantly,
obtained demodulated transfer functions made possible
to apply techniques of the conventional control systems
theory to design control systems and optimal filters for
CVG. Derived in the paper optimal noise filters using
both Wiener and Kalman approaches demonstrated
excellent performance in sensor noise removal.

Application of the presented above techniques to
CVG sensitive element motion trajectory analysis is
viewed as a topic for further research.
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AEMOIYJIbOBAHA THHAMIKA TA OITHMAJIBHA ®LIbTPALISI ITYMIB
JJI KOPIOJIICOBUX BIBPAIIMHUX I'TPOCKOIIIB

B.O. Anocromtok

Ananiz ounamiku 4ymiugozo elemenma xopionicosux eiopayitunux cipockonie (KBI) 6 mepminax amnuimyono-gazosux
SMIHHUX 003801IUE OMPUMAMU GiON0GiOHI nepedamui GYHKYIl makux 0amuuxie, 0e Kymoea WeUOKICMb € 6X000M CUCEMU.
Opumani nepedamui Gynkyii 6y10 cnpoweno 0ist OeKiIbKOX CReYianbHUX GUNAOKI8 Ma 6UKOPUCMAHO Ol OMPUMAHHSL NOJIOCIS
amnaimyono- ma gazovacmomuux xapaxmepucmux KBI. Toumicms ompumanux cnpowjeHux nepeoammux QyHKyit 6y1o
NPOAHANI308aHO MA NOPIGHAHO i3 MOYHOIO YUCENTLHOW MOOENII0 OUHAMIKU UYMIUB020 eNleMeHmd. 3a 00NoMOo2010 OMPUMAHUX
nepeoamuux yHKyYiti 6Y10 CUHME308aHO ONMUMALLHI DLTbMpU WYyMi6 gumipiogants memoodamu Binepa ma Kaimana.

Kniouosi cnosa: siopayiiinuii 2ipockon, Ounamixa 4ymiugo2o eremMenmad, ONMmuMaibha QLibmpayis, uymu UMIPIOSaHHsL.

JEMOJYJ/IMPOBAHHASA JTUHAMHUKA U OIITUMAJIBHASA ®UJIBTPALIUSA IITYMOB
JJI51 KOPUOJIMCOBBIX BUBPALIMOHHBIX THPOCKOIIOB

B.A. Anocromok

AHanuz OUHAMUKU YY8CMBUMENTLHO2O YIEMEHMA KOPUOTUCOBbIX 8ubpayuonnlx eupockonos (KBI) 6 mepmunax amniumyono-
Da306bIX NEPEMEHHBIX NO36ONUN NOLYHUNL COOMBEMCMBYIOUjUE NEPEOAMOUHbLe PYHKYUU MAKUX OaMYUKO8, 20e Yllo8ds CKOPOCHb
saensiemess 6x00om cucmemvl. Ilonyuennvie nepedamounvie Qyukyuu ObLIU YNPOUJeHbl Ol HECKONbKUX YACHHBIX Clyudes u
UCNONL308GHbI OISl NONYHEHUS 8bIPANCEHUTL O NONIOCO8, AMIIUMYOHO- U (aszouacmomubix xapakmepucmux KBI. Tounocmo
NOJYYEHHBIX YNPOUEHHbIX NEPEOAMOYHbIX (DYHKYUL Oblid NPOAHATUZUPOBAHA U CPABHEHA C MOYHOU YUCIEHHOU MOOeNbio
OUHAMUKYU YyBCMBUmensHozo snemenma. C nomMowplo NOIyYeHHbIX Nepeoamoynblx QyHKyutl Obiiu CUHMESUPOBAHBL ONIMUMATIbHbLE
Qunvmpel wymoe usmepenust memooamu Bunepa u Kaimana.

Knrouesnie cnoea: 6M6pal4u0HHblL? 2UpocKon, OUHAMUKA UyecmeumeslbHoco dj1emenma, onmumailbHas qubmpauu}z, wumsl
U3mepernus.
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