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EXCITATION OF PRIMARY OSCILLATIONS IN MICROMECHANICAL 
VIBRATORY GYROSCOPES 

 
Mathematical models of an electrostatic comb-drive actuator used in many micro-electromechanical systems 

and primary oscillations excitation system for micromechanical vibratory gyroscopes are developed and studied in 
the paper. A simple approximate mathematical model is presented for the capacitances and electrostatic forces 
operating in interdigitated microstructures, which led to the formulation of the optimal excitation system operation 
modes. Based on the analysis of the non-linear capacities, design recommendations for the comb-drive structure 
were formulated. Obtained model allows the analysis of not only linear but also non-linear phenomena in the 
physics of such structures. Presented mathematical model is simple enough to be used instead of time-consuming 
numerical simulations as well as for the further improvements of micromechanical sensors performances. 
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Introduction 

Micromechanical resonators have been extensively 
developed in the last decade for sensor applications in 
mechanical, chemical, physical, and biological areas. 
One such sensor is the Coriolis vibratory gyroscope 
(CVG), which often is referred to as micromechanical 
gyroscope [1] with respect to its most commonly used 
fabrication technology and the resulting size. Relatively 
recently this type of inertial sensors received significant 
attention from the developers of different kinds of guided 
munitions due to its low-cost and high survivability, 
which is essential for the combat systems. For example, 
micromechanical gyroscopes are commonly accepted as 
the best choice for the cannon launched rockets used in 
modern tanks. From this prospective, further improvements 
of micromechanical gyroscopes performances is viewed 
to be necessary and highly requested problem in the 
industry. One way to improve performances of CVG is 
to increase efficiency and provide more stable operation 
of its primary oscillation excitation system, since these 
oscillations are then modulated with the measured 
angular rate [2].  

Micromechanical gyroscopes, as well as many of 
the modern micro-electromechanical systems (MEMS), 
use interdigitated microstructures both as an actuating 
and sensing component. Photograph of the typical 
interdigitated microstructure, which is part of the 
micromechanical gyroscope excitation system, is shown 
in Figure 1. 

Sometimes such interdigitated microstructures are 
referred to as electrostatic comb-drive, which was first 
demonstrated by Tang et al. [3, 4]. Rigorous theory of 
the comb-drive was developed for the electrostatic 
forces operating on this actuator with and without the 
presence of a ground plane by Johnson and Warne [5]. 

  
 

Fig. 1. Comb-drive of micromechanical gyroscope 
 

However, currently developed theories of the 
interdigitated microstructures that enable the analysis of 
non-linear effects are quite complicated. As a result, 
designers of MEMS still have the tendency to use 
numerical finite element method (FEM) simulations in 
order to model micro-systems with electrostatic comb-
drives. Despite increased computational capabilities of 
the modern computers, complete FEM calculations still 
remain extremely time consuming. In order to improve 
the time performances of the FEM simulations, some 
approximate methods were developed, specifically 
macromodelling (see Gabbay and Senturia, [6]). 

Nevertheless, numerical approaches do not allow 
analytical analysis of the comb-drive based excitation 
systems. Hence problem of creating simple approximate 
approach to analyse the comb-drive based excitation 
systems to account for the essential for micromechanical 
gyroscopes performances non-linear effects is addressed 
in this paper. 

Primary oscillations excitation system 
Let us first consider operation of the primary 

oscillation excitation system. Circuit in the figure 2 can 
describe general method of the resonator driving by 
means of the comb-drive.  
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Fig. 2. Resonator driving principle 
 
Here 1V  is the voltage applied to stators (fixed 

parts) of the comb drive 1 and 2, 0V  is the bias voltage 
applied to the inner moving mass, j  is the phase shift 
between voltages applied to the first and second comb 
drive. Total electrostatic force acting on the mass along 
the X axis in this case can be determined as 
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where 1C  and 2C  are the capacitances of the comb 
drive 1 and 2 (fig. 2) respectively, x is the displacement 
of the mass along the corresponding axis, t is the phase 
of the driving voltage 1V . In case of the symmetrical 
and linear comb drives, where capacitances at the tips 
are negligible constdxdCdxdCdxdC »=-» /// 21  
and the force (1) will become 
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In micromechanical vibratory gyroscopes we usually 
want to have primary oscillations to have harmonic 
shape, to make demodulation process as accurate as 
possible. We can assume therefore that )sin(1 tVV w= ,  

VVV d=0 . As a result, expression (2) becomes 
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It is apparent, that the only parameter capable of affecting 
the shape of the excitation force is the phase shift j  
between voltages on the comb-drives. Let us determine 
this phase shift from the maximum efficiency criterion. 
If the driving force does not depend on the displacement 
x, efficiency of the comb drive can be evaluated as 
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Graph of the efficiency (4) is shown in fig. 3. 

 
Fig. 3. Comb-drive efficiency 

 
Analysing  graph in  Fig.  3,  one  should  clearly  see  

different optimal modes of excitation corresponding to 
different values for bias voltage Vd . Let us identify 
these modes. 

Maximum efficiency values for the phase shift j  
and the voltage ratio Vd  as a parameter can be 
determined from the following equation 
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Solving equation (5) yields maximum efficiency 
phases given by the following equations: 
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Efficiency plot for the maximum efficiency modes 
given by the different bias voltages in expressions (6) is 
shown in Fig. 4. 

It is apparent that there are two different optimal 
phase shifts for different values of the bias Vd , leading 
to the two essentially different driving modes for the 
primary excitation: without bias voltage (grounded 
mass), and with bias, which is larger then a half of the 
driving voltage amplitude. 

 

 
Fig. 4. Efficiency at different bias voltages 

(solid – 5.0=dV , dashed – 0=dV ) 
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Total electrostatic forces acting on the mass in these 
modes will be determined by means of the following formulae 

dx
dCtDFx )(= . (7) 

Here )(tD  is the driving function, which is 
different for the two modes and can be calculated as 
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It has to be noted that “biased” mode ( 2/1³Vd ) 
results in a larger driving force (higher efficiency) comparing 
with “grounded” mode ( 0=Vd ). At the same time, 
driving force in the “grounded” mode will actuate with 
doubled frequency regarding to driving voltage 
frequency (see fig. 5).  

This effect of doubling frequency leads to possibility 
to separate excitation voltage from the sensing in the 
frequency domain. As a result, better signal to noise 
ratios can be achieved. 

Comb-drive capacitance 
During all derivations presented above it was assumed 

that force doesn’t depend on mass displacement. It means 
that constdxdC » ,  which  is  almost  true  for  the  small  
displacements. But in some applications of the comb drives 
it is necessary to achieve large displacement of the mass. 
The latter is often the case with the micromechanical 
gyroscopes, when higher amplitude of primary oscillations 
leads to higher sensitivity to the angular rate. In this 
case capacitance derivative is no longer constant and 
depends on displacements in a non-linear way. 

 

 
Fig. 5. Driving force in different modes 

(solid – “grounded” mode, dashed – “biased” mode) 
 

Let us calculate capacitance for the comb structure 
cell that is shown in fig. 6. 
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Fig. 6. Elementary comb-drive cell 

There are four basic capacitances in this structure: 
ixC  and iyC  -  between  stator  (i=1)  and  mass  (i=2) in 

the X and Y direction respectively. Other dimensions are 
iL , iB  and H  - length, width and height of the comb-

drive finger. Initial position of the mass in the shown 
reference system will be defined by means of four gaps ixG  
and iyG . If displacement of the mass relatively to stator 

will be defined by two variables x  and y  then 
corresponding capacitances will be 
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Here 0L  is  the  initial  overlapping  length,  such  as  

xx GLGLL 21120 -=-= . 
Total capacitance between mass and stator will be 

a sum of all capacitances: 
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Here n  is the total number of the elementary cells in the 
comb drive. Such capacitance will be no longer linear 
function of the displacements. Dependence of the 
capacitance from the displacements in x  direction is 
presented in fig. 7. 
 

 
Fig. 7. Capacitance as a function of x and y displacements 

 

Apparently, for large displacements both along x and y 
coordinates we observe non-linearity in the capacitance, 
given by the expression (10). In Fig. 8 one can see the 
section of the graph in Fig. 7 along the x axis. 
 

 
Fig. 8. Capacitance of the comb-drive 

(solid – non-linear, dashed – neglecting tip width) 
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Here dashed line corresponds to the “linear” capacitance, 
where tip widths 1B  and 2B  in (10) were neglected (set 
to zero). From this graph one can see that “linear” 
capacitance approximation is noticeably different from 
the actual one.  

With respect to (10), capacitances 1C  and 2C  in 
(1) for the symmetrical comb drive will be 

( ) ( )yxCyxC ,,1 = , 
( ) ( )yxCyxC ,,2 -= , 

and hence correspondent derivatives for the force (1) 
can be represented as follows 
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Substituting in (1) derivatives with respect to 
displacement in y direction allows to calculate forces 
acting along Y axis as well. Corresponding derivatives are 

( ) ( ) ( ) ú
ú
û

ù

ê
ê
ë

é

+
-

-
+ee= 2

1
2

2
00

1 11
yGyG

xLHn
dy

dC

yy
, 

( ) ( ) ( ) ú
ú
û

ù

ê
ê
ë

é

+
-

-
-ee= 2

1
2

2
00

2 11
yGyG

xLHn
dy

dC

yy
. 

(12) 

Considering (12) one can see that displacements in 
the x  direction will result in changes of the force in y

direction as well. For some applications, such as comb 
driven micromechanical gyroscopes with double folded 
proof mass suspension, this will cause significant bias. 

What else is important to note, is the absence of 
the overlapping length 0L  in the expression (11). This 
means, that actuation force does not depend on the 
overlapping length, while it is still present in the side 
force derivatives (12). From this point of view, 
introducing overlap diminishes influence of the primary 
oscillations on the quadrature mass motion. 

Excitation forces with non-linear 
capacitance 

Let us consider force in the x  direction for the 
non-linear capacitance comb drive. For the small 
displacements in x  direction we can approximate 
derivatives in (11) by linear dependencies 
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Thus  net  force  acting  on  the  mass  in  case  of  
harmonic excitation with respect to (1) and (13) will be 
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Results of the efficiency analysis of the non-linear 
comb drive are similar to those considered above. Graph in 
Fig. 9 demonstrates accuracy of the approximation (13) 
in comparison with the more accurate expressions (11) 
with respect to the sum of the capacitance derivatives 
for both comb-drives. 
 

 
Fig. 9. Capacitance derivatives approximation 
(solid – non-linear derivative, dashed – linear 

approximation) 
 

One should certainly note that the accuracy of the 
linear approximation is quite limited to the relatively 
small displacements. 

Again there will be two optimal modes with the 
same phase shift. For the “biased” excitation mode 

],))(sin(

)sin(2[
22

1

00
2

xtVa

tVanHVFx

w+d+

+wdee=
 (15)

and for the “grounded” mode 
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It has to be noted that for the biased excitation with 
large voltage ratio Vd  non-linearity of the capacitances 
will cause significant natural frequency shift that cannot 
be neglected for some applications. In order to reduce 
influence of the non-linear effects it is necessary to 
increase gaps in the x  direction in comparison with the 
corresponding displacements. 

Linear in terms of the displacement x force essentially 
perturbs the natural frequency of the primary oscillation 
mode. For the “grounded” mode force given by the (16), 
the natural frequency receives a constant shift as 

 6  4  2 0 2 4 6
 0.6

 0.4

 0.2

0.0

0.2

0.4

0.6

x, ��m�

d�C 1C 2�
�dx,��F �m

�



134  Військово-технічний збірник  
 2(5)/2011 

 

© В.О. Апостолюк 

m
anHVkk

2
10

2
2 ee
-=* , (17) 

where k  is the initial natural frequency related to the 
spring constant of the elastic suspension, m  is the mass 
of the sensitive element. Actual force acting on the 
sensitive element is shown in Fig. 10. 

In case of the “biased” mode force (15), the natural 
frequency will be variable in time: 
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Actual force in significantly non-linear mode for 
the “biased” excitation mode is shown in Fig. 11. 
 

 
Fig. 10. Actual force acting on the sensitive element in the 

“grounded mode” 
 

 
Fig. 11. Actual force acting on the sensitive element in the 

“biased mode” 
 
Although forces in the figures 10 and 11 are far 

from being harmonic, after they are applied to the 
spring-mass-damper system of the sensitive element, the 
resulting oscillations are not that much different from 
the harmonic shape. This is the result of the natural 
filtering properties of the oscillator. Nevertheless, if 
almost ideal harmonic excitation is desired, the gaps 
between tips of the combs ixG  must  be  chosen  3-5  
times larger than the expected amplitude of primary 
oscillations, and excitation frequency must be adjusted 
according to the (17) and (18). 

Conclusions 
In the presented above research of the comb-drive 

based primary oscillations excitation system for 
micromechanical gyroscopes relatively simple mathematical 
model of the system has been developed. Based on the 
developed model, two essentially different excitation 
modes were found. Along with the non-linear capacitance 
model, simple approximate models for the excitation 
forces were obtained and analysed. As a result, comb-
drive design recommendations were formulated, that 
reduce undesired effect from the present in the system 
non-linearity. Derived mathematical model of the comb-
drive based excitation system allows analytical analysis 
of the micromechanical gyroscopes dynamics without 
necessity for the time consuming numerical simulations. 

Since  obtained  in  the  paper  model  of  the  
electrostatic side force clearly demonstrated unstable 
balance of the primary oscillations in y direction, further 
study of the stability problems is viewed as a natural 
continuation to the presented above research. 
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Збудження первинних коливань в мікромеханічних вібраційних гіроскопах 

В.О. Апостолюк 

В цій статті було розроблено та вивчено математичні моделі електростатичного гребінчастого двигуна, який 
широко використовується у багатьох мікроелектромеханічних системах та системах збудження первинних коливань 
для мікромеханічних вібраційних гіроскопів. Представлено просту наближену математичну модель для ємностей та 
електростатичних сил, діючих у зустрічно-штирьових структурах, яка привела до знаходження оптимальних режимів 
роботи системи збудження. На основі аналізу нелінійних ємностей було сформульовано рекомендації до проектування 
гребінчастих структур. Отримана модель дозволяє аналізувати не тільки лінійні, але і нелінійні феномени у фізиці 
таких структур. Представлена математична модель достатньо проста, щоб її використовувати замість чисельного 
моделювання, що потребує багато часу, а також для подальшого покращення характеристик мікромеханічних 
сенсорів. 

Ключові слова: мікромеханічний гіроскоп, гребінчастий двигун, нелінійна фізика, система збудження. 

Возбуждение первичных колебаний в микромеханических вибрационных гироскопах 

В.А. Апостолюк 

В этой статье были разработаны и изучены математические модели электростатического гребенчатого 
двигателя, который широко используется во многих микроэлектромеханических системах и системах возбуждения 
первичных колебаний для микромеханических гироскопов. Представлено простую приближенную математическую 
модель для емкостей и электростатических сил, действующих во встречно-штыревых структурах, которая привела к 
нахождению оптимальных режимов работы системы возбуждения. На основе анализа нелинейных емкостей были 
сформулированы рекомендации к проектированию гребенчатых структур. Полученная модель позволяет анализировать не 
только линейные, но и нелинейные феномены в физике таких структур. Представленная математическая модель 
достаточно простая, чтобы использовать ее вместо занимающего много времени численного моделирования, а также 
для дальнейшего улучшения характеристик микромеханических датчиков. 

Ключевые слова: микромеханический гироскоп, гребенчатый двигатель, нелинейная физика, система возбуждения. 


