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EXCITATION OF PRIMARY OSCILLATIONS IN MICROMECHANICAL
VIBRATORY GYROSCOPES

Mathematical models of an electrostatic comb-drive actuator used in many micro-electromechanical systems
and primary oscillations excitation system for micromechanical vibratory gyroscopes are developed and studied in
the paper. A simple approximate mathematical model is presented for the capacitances and electrostatic forces

operating in interdigitated microstructures, which led to the formulation of the optimal excitation system operation
modes. Based on the analysis of the non-linear capacities, design recommendations for the comb-drive structure
were formulated. Obtained model allows the analysis of not only linear but also non-linear phenomena in the
physics of such structures. Presented mathematical model is simple enough to be used instead of time-consuming
numerical simulations as well as for the further improvements of micromechanical sensors performances.
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Introduction

Micromechanical resonators have been extensively
developed in the last decade for sensor applications in
mechanical, chemical, physical, and biological areas.
One such sensor is the Coriolis vibratory gyroscope
(CVG), which often is referred to as micromechanical
gyroscope [1] with respect to its most commonly used
fabrication technology and the resulting size. Relatively
recently this type of inertial sensors received significant
attention from the developers of different kinds of guided
munitions due to its low-cost and high survivability,
which is essential for the combat systems. For example,
micromechanical gyroscopes are commonly accepted as
the best choice for the cannon launched rockets used in
modern tanks. From this prospective, further improvements
of micromechanical gyroscopes performances is viewed
to be necessary and highly requested problem in the
industry. One way to improve performances of CVG is
to increase efficiency and provide more stable operation
of its primary oscillation excitation system, since these
oscillations are then modulated with the measured
angular rate [2].

Micromechanical gyroscopes, as well as many of
the modern micro-electromechanical systems (MEMS),
use interdigitated microstructures both as an actuating
and sensing component. Photograph of the typical
interdigitated microstructure, which is part of the
micromechanical gyroscope excitation system, is shown
in Figure 1.

Sometimes such interdigitated microstructures are
referred to as electrostatic comb-drive, which was first
demonstrated by Tang et al. [3, 4]. Rigorous theory of
the comb-drive was developed for the electrostatic
forces operating on this actuator with and without the
presence of a ground plane by Johnson and Warne [5].
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Fig. 1. Comb-drive of micromechanical gyroscope

However, currently developed theories of the
interdigitated microstructures that enable the analysis of
non-linear effects are quite complicated. As a result,
designers of MEMS still have the tendency to use
numerical finite element method (FEM) simulations in
order to model micro-systems with electrostatic comb-
drives. Despite increased computational capabilities of
the modern computers, complete FEM calculations still
remain extremely time consuming. In order to improve
the time performances of the FEM simulations, some
approximate methods were developed, specifically
macromodelling (see Gabbay and Senturia, [6]).

Nevertheless, numerical approaches do not allow
analytical analysis of the comb-drive based excitation
systems. Hence problem of creating simple approximate
approach to analyse the comb-drive based excitation
systems to account for the essential for micromechanical
gyroscopes performances non-linear effects is addressed
in this paper.

Primary oscillations excitation system

Let us first consider operation of the primary
oscillation excitation system. Circuit in the figure 2 can
describe general method of the resonator driving by
means of the comb-drive.



2(5)/2011

Fig. 2. Resonator driving principle

Here V) is the voltage applied to stators (fixed
parts) of the comb drive 1 and 2, ¥}, is the bias voltage
applied to the inner moving mass, ¢ is the phase shift

between voltages applied to the first and second comb
drive. Total electrostatic force acting on the mass along
the X axis in this case can be determined as

p i) =1y)* dC | (4(0)-V) dCy
* 2 dx 2 dx
where C; and C, are the capacitances of the comb

, (D

drive 1 and 2 (fig. 2) respectively, xis the displacement
of the mass along the corresponding axis, t is the phase
of the driving voltage ¥;. In case of the symmetrical

and linear comb drives, where capacitances at the tips
are negligible dC|/dx~—-dC,/dx=dC/dx = const

and the force (1) will become
1 dc
B =A@+ ) =10 - i@ -1 1= (@)

In micromechanical vibratory gyroscopes we usually
want to have primary oscillations to have harmonic
shape, to make demodulation process as accurate as
possible. We can assume therefore that V] =V sin(wt?),

Vo =V38V . As aresult, expression (2) becomes
v: oo 2
F, =—/(sin(ot + ¢)-8V)~ -
? dC ()
— (sin(ot) - 8V)? ]—.
dx

It is apparent, that the only parameter capable of affecting
the shape of the excitation force is the phase shift ¢

between voltages on the comb-drives. Let us determine
this phase shift from the maximum efficiency criterion.
If the driving force does not depend on the displacement
x, efficiency of the comb drive can be evaluated as
21
PV.9)= [[F.(mFdr
0

= g(l +8512 + cos((p))sinng x (4

2
X (Vzd—cj .
dx
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Graph of the efficiency (4) is shown in fig. 3.
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Fig. 3. Comb-drive efficiency

Analysing graph in Fig. 3, one should clearly see
different optimal modes of excitation corresponding to
different values for bias voltage 38V . Let us identify
these modes.

Maximum efficiency values for the phase shift ¢
and the voltage ratio 3V as a parameter can be
determined from the following equation

dP(8V,)

de

Solving equation (5) yields maximum efficiency
phases given by the following equations:

:0:>(46V2 +cos@)sinp =0. (35

¢= arccos(—46V2), oV <%),
(p:n,(SVZ%), (6)

T
=—,(8V=0).
¢=- ( )

Efficiency plot for the maximum efficiency modes
given by the different bias voltages in expressions (6) is
shown in Fig. 4.

It is apparent that there are two different optimal
phase shifts for different values of the bias 6/, leading
to the two essentially different driving modes for the
primary excitation: without bias voltage (grounded
mass), and with bias, which is larger then a half of the
driving voltage amplitude.

0.0 0.5 10 15 2.0
G Ut
Fig. 4. Efficiency at different bias voltages
(solid — 8V = 0.5, dashed — 8V =0)
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Total electrostatic forces acting on the mass in these
modes will be determined by means of the following formulae

F, = D(t)‘;—i. (7)

Here D(¢) is the driving function, which is
different for the two modes and can be calculated as

D(t) = 2V 2V sin(ot), oV z%,

)2 ®)
D(t) = Tcos(2(nt) , OV =0.

It has to be noted that “biased” mode (6 >1/2)
results in a larger driving force (higher efficiency) comparing
with “grounded” mode (OF =0). At the same time,
driving force in the “grounded” mode will actuate with
doubled frequency regarding to driving voltage
frequency (see fig. 5).

This effect of doubling frequency leads to possibility
to separate excitation voltage from the sensing in the
frequency domain. As a result, better signal to noise
ratios can be achieved.

Comb-drive capacitance

During all derivations presented above it was assumed
that force doesn’t depend on mass displacement. It means
that dC/dx ~ const , which is almost true for the small

displacements. But in some applications of the comb drives
it is necessary to achieve large displacement of the mass.
The latter is often the case with the micromechanical
gyroscopes, when higher amplitude of primary oscillations
leads to higher sensitivity to the angular rate. In this
case capacitance derivative is no longer constant and
depends on displacements in a non-linear way.
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Fig. 5. Driving force in different modes
(solid — “grounded” mode, dashed — “biased” mode)
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Let us calculate capacitance for the comb structure
cell that is shown in fig. 6.
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Fig. 6. Elementary comb-drive cell
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There are four basic capacitances in this structure:
Cix and C;, - between stator (i=1) and mass (i=2) in

the X and Y direction respectively. Other dimensions are
L;, B; and H - length, width and height of the comb-

drive finger. Initial position of the mass in the shown
reference system will be defined by means of four gaps G;,

and G, . If displacement of the mass relatively to stator

will be defined by two variables x and y then
corresponding capacitances will be

gegBH eegBH
Cl)c:GO1 9C2x:G02 P
Ix — % 2x —X (9)
sso(LO + x)H aaO(LO - x)H
C]y =, Czy =
G1y+y G2y_y

Here L, is the initial overlapping length, such as
Ly =Ly =Gy =Ly =Gy,

Total capacitance between mass and stator will be
a sum of all capacitances:

Cx,»)=Ci +Cy +Cpy, + Gy, =
BB
Glx—x

= nsaoH( +
sz - X

(10)
LO +Xx LO + X
Gy y +y Gy y Y
Here n is the total number of the elementary cells in the
comb drive. Such capacitance will be no longer linear
function of the displacements. Dependence of the

capacitance from the displacements in x direction is
presented in fig. 7.
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Fig. 7. Capacitance as a function of x and y displacements

Apparently, for large displacements both along x and y
coordinates we observe non-linearity in the capacitance,
given by the expression (10). In Fig. 8 one can see the
section of the graph in Fig. 7 along the x axis.

20

X, Llm L
Fig. 8 Capacitance of the comb-drive
(solid — non-linear, dashed — neglecting tip width)
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Here dashed line corresponds to the “linear” capacitance,
where tip widths B; and B, in (10) were neglected (set
to zero). From this graph one can see that “linear”
capacitance approximation is noticeably different from
the actual one.

With respect to (10), capacitances C; and C, in

(1) for the symmetrical comb drive will be
Cy(x.y)=Clx.»),
Cy(xy)=Cl=xy),
and hence correspondent derivatives for the force (1)

can be represented as follows

dac, B B,
—— = Hnee + +
dx {(G]x—x)z (Gay —)
1 1
+ + A
Gly +y G2y - y:|
(11)
dc, B B,
—==—Hnee + +
dx {ww)z (Gay +x)

1 1
+ + .
Gl y +y G2 y -y
Substituting in (1) derivatives with respect to

displacement in y direction allows to calculate forces
acting along Y axis as well. Corresponding derivatives are

a6 _ H - 1
& ngso(LO +x ( . —y}z ( " y]2 >
(12)
4G, _ — 1 - 1
b Hneeg (LO x ( . —y)z ( - y)z .

Considering (12) one can see that displacements in
the * direction will result in changes of the force in »
direction as well. For some applications, such as comb
driven micromechanical gyroscopes with double folded
proof mass suspension, this will cause significant bias.

What else is important to note, is the absence of
the overlapping length L, in the expression (11). This
means, that actuation force does not depend on the
overlapping length, while it is still present in the side
force derivatives (12). From this point of view,
introducing overlap diminishes influence of the primary
oscillations on the quadrature mass motion.

Excitation forces with non-linear
capacitance

Let us consider force in the x direction for the
non-linear capacitance comb drive. For the small
displacements in x direction we can approximate
derivatives in (11) by linear dependencies

G ~ anaO(ao + alx),
dx

a0, (13)

e ~ —nHaaO(ao - alx),
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B B 1 1
=—2+ 5 + + ,
Glx sz G1y+y G2y_y

Glx G2x

Thus net force acting on the mass in case of
harmonic excitation with respect to (1) and (13) will be

nH V2880
Fo=——"
2

—(ag — ayx)(BV — sin(cot))z]

Results of the efficiency analysis of the non-linear
comb drive are similar to those considered above. Graph in
Fig. 9 demonstrates accuracy of the approximation (13)
in comparison with the more accurate expressions (11)
with respect to the sum of the capacitance derivatives
for both comb-drives.

ap

[(ao + a1x)(OV —sin(wr + (p))2 _ (14
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Fig. 9. Capacitance derivatives approximation
(solid — non-linear derivative, dashed — linear
approximation)

One should certainly note that the accuracy of the
linear approximation is quite limited to the relatively
small displacements.

Again there will be two optimal modes with the
same phase shift. For the “biased” excitation mode

F, = nHV g [2aydV sin(wr) +

s (15)
+a1(8V* +sin” (of))x],
and for the “grounded” mode
2
F,= W%[alx +ag cos(2ot)]. (16)

It has to be noted that for the biased excitation with
large voltage ratio 8/ non-linearity of the capacitances
will cause significant natural frequency shift that cannot
be neglected for some applications. In order to reduce
influence of the non-linear effects it is necessary to
increase gaps in the x direction in comparison with the
corresponding displacements.

Linear in terms of the displacement x force essentially
perturbs the natural frequency of the primary oscillation
mode. For the “grounded” mode force given by the (16),
the natural frequency receives a constant shift as
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(17)

2
ko = /kz _ nHV gggay ,
2m

where k is the initial natural frequency related to the
spring constant of the elastic suspension, m is the mass
of the sensitive element. Actual force acting on the
sensitive element is shown in Fig. 10.

In case of the “biased” mode force (15), the natural
frequency will be variable in time:

(18)

2 2
ky = {/ﬁ _ VTR0 512 4 gin2(wr)) |
m

Actual force in significantly non-linear mode for
the “biased” excitation mode is shown in Fig. 11.
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Fig. 10. Actual force acting on the sensitive element in the
“grounded mode”
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Fig. 11. Actual force acting on the sensitive element in the

“biased mode”
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Although forces in the figures 10 and 11 are far
from being harmonic, after they are applied to the
spring-mass-damper system of the sensitive element, the
resulting oscillations are not that much different from
the harmonic shape. This is the result of the natural
filtering properties of the oscillator. Nevertheless, if
almost ideal harmonic excitation is desired, the gaps
between tips of the combs G,, must be chosen 3-5

times larger than the expected amplitude of primary
oscillations, and excitation frequency must be adjusted
according to the (17) and (18).
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Conclusions

In the presented above research of the comb-drive
based primary oscillations excitation system for
micromechanical gyroscopes relatively simple mathematical
model of the system has been developed. Based on the
developed model, two essentially different excitation
modes were found. Along with the non-linear capacitance
model, simple approximate models for the excitation
forces were obtained and analysed. As a result, comb-
drive design recommendations were formulated, that
reduce undesired effect from the present in the system
non-linearity. Derived mathematical model of the comb-
drive based excitation system allows analytical analysis
of the micromechanical gyroscopes dynamics without
necessity for the time consuming numerical simulations.

Since obtained in the paper model of the
electrostatic side force clearly demonstrated unstable
balance of the primary oscillations in y direction, further
study of the stability problems is viewed as a natural
continuation to the presented above research.
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30y1KeHHsI MEPBUHHHUX KOJMBAaHb B MiKpoMexaHiYHIX BidpaniiiHux ripockonax
B.O. Anocromok

B yiti cmammi 6yn0 po3pobneno ma ueueHo mMamemMamuini MoOeni eleKmpoCmamuyHo20 epebiHYacmozo 08UsyHa, aKuil
WUPOKO BUKOPUCTHOBYEMBCA Y 6a2AmMbOX MIKPOEIeKMPOMEXaHiYHUX CUCTeMAX Ma cucmemax 30y0CceHts NepeUHHUX KOIUBAHD
0 MiKpoMexaHiuHux eiopayitinux eipockonis. Ilpedcmagneno npocmy HAOIUNCEHY MAMEMAMUYHY MOOenb Olsl EMHOCHeL ma
eNeKmpoCmMamuyHux Cuit, OifOYUX Y 3YCIMPIYHO-UMUPLOGUX CIPYKMYPAX, AKA NPUBENd 00 3HAXOOICCHHS ONMUMANHUX PedHCUMIB
pobomu cucmemu 30yddicenns. Ha ocnogi ananizy neniniiinux emHocmeti 6y10 cqpopmynbo8ano pekomeHoayii 00 npoexmyeants
epebinuacmux cmpykmyp. Ompumana mMooens 0036075€ AHANIZY6amu He MilbKu NiHiliHI, aie | HeniHitni penomenu y hizuyi
maxux cmpykmyp. IIpedcmasnena mamemamuyna mooens 00CMamubo nPocma, woo it BUKOPUCO8Y8AMU 3AMICMb YUCETbHO20
MOOenosants, wo nompebye 6azamo uacy, a makodxc 01 NOOAIbULO20 NOKPAWEHHS XAPAKMEPUCTUK MIKPOMEXAHIUHUX
ceHcopis.

Kniouosi cnosa: mixpomexaniunuii 2ipockon, epebinyacmuil 08usyH, HeliHilina Qizuxa, cucmema 36y0CceHHsl.
Bo30y:k1eHne nepBUYHBIX KOJe0aHHIT B MUKPOMEXaHHYeCKAX BUOPAIIMOHHBIX TMPOCKONAX
B.A. Anocromrok

B omoii cmamve 6viiu paspabomanvl U uzyueHbl MameMmamuyecKue MoOenu NeKMPOCMAMUYEcKo20 2pedeHuamozo
ogueamerns, KOMOPbIL WUPOKO UCHONb3VEMC 60 MHOSUX MUKPOIIEKMPOMEXAHUYECKUX CUCEMAX U CUCEMAX 8030VIHCOeHUs.
NEPEUYHBIX KOACOAHU 0Nl MUKDOMEXAHUYECKUX 2UPOCKonos. I[IpedcmasneHo npocmyro NpubIudiCeHHyo MamemMamuieckyro
MOOens 01 eMKOCIel U SIeKMPOCMamu4eckux Cui, 0elicCmsayowux 60 6CMPEYHO-UMbIPesblX CINPYKIMYpax, Komopas npugeid K
HAXOHCOEHUIO ONMUMATLHBIX PeXCUMO8 pabombl cucmemvl 6030yicoenus. Ha ocnoee ananusa nenunelinvlx emxocmeil ObLiu
CchopmMymposamsl pekomMeHOayuU K NPoeKmuposanuto pebendamolx cmpykmyp. Ilonyuennas mooens no3eoisem aHanu3uposams He
MOALKO JUHElHble, HO U HeluHelHble (enomenvl 8 uszuxe maxkux cmpykmyp. IIpedcmaenennas mamemamudeckas mooensb
00Cmamo4Ho npocmast, Ymobvl UCNONb308AMb €€ BMECIO 3aAHUMAIOUe20 MHO20 8PEeMEHU YUCTEHHO20 MOOCIUPOBAHUSL, 4 MAKICe
0151 OWIbHENULEe20 YIYHIUEHUS. XAPAKIMEPUCMUK MUKPOMEXAHUYECKUX OAMYUKOB.

Knrouesble cnoea: MukpomMexaHuueckutl 2UpoCcKon, ZpebeHyamylii 08U2AMeltb, HEUHEIHAs (PU3UKa, CUCmeMda 8030YACOCHUSL.
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