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GENERALISED SURVIVABILITY MODEL FOR ARMOURED WEAPONS AND EQUIPMENT
T. Stakh, R. Sidor, D. Khaystov, Ya. Khaystov, O. Kyrychuk, V. Mudryk, Yu. Nastishin

Today, there is no single, standardized approach to quantifying the survivability of BTOT samples. The survivability
models available in the literature differ in the number of components that define the essence of the concept of survivability,
depending on the type of military equipment and conditions of its use. The analysis of the literature shows that the following
components of the survivability of BTOT include at least the following: 1) secrecy, 2) ability to eliminate the threat by own
means, 3) security, 4) recoverability, 5) mobility, 6) resistance to overturning, 7) resistance to spontaneous operational damage
or own defects. In order to take into account, the contribution of survivability components to the overall survivability of BTOT,
the paper develops the theoretical basis for their classification as random additive/multiplicative statistical events. The proposed
step-by-step algorithm for classifying survivability components as random events makes it possible to determine the rule by
which their probabilities are combined into the overall survivability indicator. In the available information sources, the above
seven components of survivability are considered in various combinations, but the simultaneous consideration of all seven
components has not yet been carried out. Moreover, an algorithm for taking into account new components of resilience, if any,
remains to be developed. This paper is devoted to the development of a generalized model for assessing durability, taking into
account the seven known durability components and with the possibility of introducing new components based on the
classification of durability components as random events. The proposed generalized model of sample survivability is developed
in two stages. The first stage is to create a basic survivability model that takes into account the seven generally accepted
components. At the second stage of developing the generalized model, we propose a new survivability component, which we call
threat activity, and use its example to illustrate how new components can be added to the basic model. To quantify the
effectiveness of the resilience model and the efficiency of innovative measures to improve specific resilience components, we
propose appropriate quantitative indicators.

Keywords: survivability of armoured weapons and equipment; operational and combat survivability of military equipment;
components of military equipment survivability; additive and multiplicative random events.
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IDENTIFICATION OF NONLINEAR AERODYNAMIC PROJECTILE
COEFFICIENTS BASED ON A MODIFIED POINT MASS TRAJECTORY MODEL

To increase calculation of projectile flight trajectories effectiveness based on mathematical models which
describe the spatial movement of the projectile in the air, a pressing question it is relevant to determine individual
aerodynamic projectile coefficients with specified accuracy. The construction of modern mathematical models of
projectile flight is based on an approximate approach which is called the small-angle approximation. According to
this approach, the aerodynamic coefficients are expanded in a Taylor series in terms of the angle of attack and only
the linear terms of the expansion are retained, which allows to significantly simplify the mathematical models of the
projectile's flight, but considerably worsens the accuracy of calculating its flight trajectories. The most suitable for
determining the aerodynamic coefficients of a projectile is a modified point mass trajectory model, as a
mathematical model of projectile flight (STANAG 4355 (Edition 3)). The article presents procedures for converting
a modified point mass trajectory model into a system of differential-algebraic equations provided in the real form,
which, given the appropriate set of linear and nonlinear aerodynamic coefficients, allows calculating the main
parameters of the projectile's flight with less computational resources. Analytical expressions were obtained for
identifying the aerodynamic coefficients of the drag force, lift force, Magnus force, decreasing of the projectile's
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rotational speed, its overturning moment, and the square of the module of the projectile's angle of attack. It is shown
that, given a known function of the change in the angular velocity of the projectile's own rotation, the obtained
analytical expressions functionally depend exclusively on the parameters obtained from external trajectory
measurements (projectile flight coordinates and their derivatives).

Key words: projectile, aerodynamic force, linear and non-linear aerodynamic coefficients, mathematical
model, modified model, identification, flight parameters, yaw of repose.

Introduction

General statement of the problem and analysis
of the literature. The mathematical basis of external
ballistics is mathematical models (MM) of the projectile
flight dynamics which connect the kinematic characteristics
of the projectile (coordinates, the velocity of the center
of mass (CM) and its position in space, described by the
yaw of repose of the projectile axis relative to the
velocity vector) with the forces acting on the projectile.

The most accurate MM today is considered to be the
so-called model with six degrees of freedom — 6DOF [1,
2]. 6DOF model, based on the theory of motion of a
perfectly rigid body, developed by Euler in the 18th
century, appeared in ballistics at the beginning of the last
century and continues to develop to this day. In the theory
of motion of a perfectly rigid body it is assumed that all
forces and moments acting on the body are known.
However, in external ballistics, one of the most important
unsolved problems is the measurement (finding) of
individual (for each type of projectile) aerodynamic
coefficients which are included in the equation of
projectile flight dynamics. It should be noted that all
modern MMs are traditionally based on the so-called
small-angle approximation, when it is assumed that the
projectile is stabilized in flight and, accordingly, its
angles of attack are quite small. The angle of attack is
formed during the movement of the projectile in the gun
barrel, and is caused by the mismatch of the longitudinal
axis of the projectile with the axis of symmetry of the gun
barrel, as well as the eccentricity (imbalance) of the
weight of the projectile (Fig. 1).

Trajectory. . g

Fig. 1. Projectile motion on a trajectory
o — angle of attack of the projectile;
V — projectile velocity vector

The nature and parameters of yaw of repose and
their effect on the flight of projectiles are determined by
the level of initial disturbances: initial angles and
angular velocities of the projectile's yaw of repose
oscillations.
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It is assumed [1-3] that the forces and moments
acting on a projectile moving in air depend only on the
Mach number (M) and the square of angle of attack o In
addition, this dependence can be represented (expanded)
in the form of a Taylor series in powers o?, i.e.

F(M,a2)=Cy(M)+Cp(M)ai? +...+Cpp (M)a®" .

Limited to n terms, the coefficients of which are
called aerodynamic coefficients. This approach reveals
the existing “weakness” of the aforementioned models,
since a priori the number of retained coefficients of each
force or moment is unknown and it is impossible to
clearly form the MM for a given projectile. To
overcome this “weakness”, it would be more convenient

to identify not aerodynamic coefficients C,(M) but

aerodynamic forces (moments) F (M ,ocz) and then find

aerodynamic coefficients from them.

Determining the aerodynamic coefficients of a
projectile is a key stage in the design, modeling, and
practical use of its ballistic characteristics. Linear
coefficients describe aerodynamic drag and lift at low
angles of attack, while nonlinear coefficients take into
account more complex phenomena occurring at high
angles of attack, including flow disruption and vortex
formation. Experimental determination of these
coefficients is a complex task that requires the use of
specialized methods and equipment.

The choice of the appropriate method is
determined by the required accuracy, the available
equipment and the range of investigated parameters.
Nowadays most common methods are:

ballistic (external-trajectory) methods;

aerodynamic research methods using wind tunnels;

mathematical (numerical) methods.

The wind tunnel balancing method is less accurate
for determining linear coefficients, and has certain
limitations at large nutation angles. The ballistic
method, as a free-flight projectile method, is suitable for
studying nonlinear effects, especially under real flight
conditions, but its accuracy may be limited by both the
accuracy of experimental data and identification
methods. However, only the experimental method of
free flight of a real projectile can substantiate the
accuracy of the results obtained by any methods.
Currently, the most popular is a combination of several
methods, for example, the use of mathematical methods
such as Computational Fluid Dynamics (CFD), wind
tunnel data to compare free flight and CFD results,
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which provides the ability to assess accuracy and
reliability [4-14]. However, this approach has a number
of significant drawbacks, related both to its extreme
mathematical complexity and to the heterogeneity of the
source data.

In many of the aforementioned works, the
identification of aerodynamic coefficients is carried out
based on the 6DOF model, which contains a large
number of aerodynamic coefficients - linear and
nonlinear, which significantly complicates the
identification procedure. It is more appropriate to start
the construction and adjustment of effective
identification methods on the basis of simpler
mathematical models of projectile flight dynamics.

The main model for calculating the flight
trajectory of spin-stabilized projectiles in external
ballistics is the use of a simpler, compared to the 6DOF
model, modified point mass trajectory model
(MPMTM) standardized in STANAG 4355, which is
also known as the four-degree-of-freedom model, or the
R. Leske model [1, 2]. There are several variants of
MPMTM in explicit and implicit form [16-19].
MPMTM in explicit form allows us to obtain equivalent
equations of projectile flight dynamics, which contain
only trajectory characteristics and do not contain
characteristics of the angular motion of the projectile. In
this case, it is possible to construct a fairly simple and
effective method for identifying linear aerodynamic
coefficients [20]. However, it is known that in the
presence of nonlinear aerodynamic coefficients, reducing
the MPMTM to an equivalent explicit form is usually a
difficult task.

Therefore, the aim of the article is to develop an
effective approach to identifying nonlinear aerodynamic
coefficients taking into account the new implicit form of
MPMTM, equivalent to the original system of
equations. On its basis, we obtain algebraic expressions
suitable for identification of nonlinear aerodynamic
coefficients and the modulus of nutation angles
according to the measured trajectory data.

Main body

1. Reduction of the system of differential
equations of MPMTM to an equivalent system of
differential-algebraic equations. In general form,
MPMTM contains the following differential equations
[15]:

- equation of motion of the projectile's CM

mi=DFrLF-MF-ng+mA; 1)
- equation of rotation of a projectile around its
polar axis

. npd 4 PVC gpin 2)
81,
with initial conditions
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Do = 2TEVO
07 k.d
where m — projectile mass; u — the velocity vector of the
projectile relative to the Earth's frame of reference;
DF - drag force; LF — lift (normal) force; MF-
Magnus force; p — angular velocity of the projectile (its
own rotational speed); g — acceleration of gravity; A -
acceleration from the Coriolis force, which is caused by

the Earth's rotation;CSpin — the decreasing of the

projectile’s rotational speed; /, — polar moment of

inertia of the projectile; kc — relative length of the gun
barrel rifling stroke in calibers; d — diameter (caliber)

of the projectile; p — air density; Vg - initial velocity

of the projectile; P - the angular speed of rotation of

the projectile at the cross section of the gun barrel; v —the
velocity vector of the projectile in the terrestrial coordinate
system relative to the air, that is determined by the
components:

V=[V1’V21V2]i

©)
V=yVZ+va+V3.

Here and further in the text of the article, we will
adopt the names of the components of the aerodynamic
force (moments) in accordance with STANAG 4355
(Edition 3) [15], and we will also use bold letters to
denote vectors, and standard letters for scalars.

The drag force and lift force are expressed in
vector form as [15]:

DF = —%npd 2Cva;
1
LF =2 mpd 2C VP (4)
1 .3
MF = chpd PCrag- (axv),

where CD , C L., Cmag,f — coefficients of drag force,

lift force and Magnus force, respectively.

In vector form, the equation of the angle of attack
of the projectile, which is included in the expressions of
aerodynamic forces (4), is defined as [15]

8l p(vxu)
o= , ()
TCmS(CM 0 +CM ZOLZJV4
o o

where C,, (M,otz):CM +Cwm Zocz, Cwm:Cwm 2(12—
(02 o

linear and quadratic coefficients of the projectile
overturning moment, respectively, with initial conditions

0
(1020,
0
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The aerodynamic force coefficients Cp, C|

vary depending on the size of the angle of attack of the
projectile.

Thus, the drag coefficient is usually approximated
by the expression

colM, a?)=cp, +Cp,a’

where CDO CDz_ linear and drag force coefficients,

respectively.

The lift coefficient is also characterized by
nonlinear behavior and depends on the magnitude of the
angle of attack of the projectile.

cLM, a?)=c +cL a?
L( a ) LTEL 2@

where C|_, CL,- linear and quadratic coefficients of
o

lifting force, respectively.

When considering Magnus forces, one is usually
limited to considering only the linear term.

The generalized original system of equations
MMPM (1), (5) in scalar form in terms of components
in the Cartesian terrestrial coordinate system (Fig. 2)
will take the form:

- equation of motion of the projectile’'s CM.

d, .1 pSCo (M. o2 ! psC (M, o2 V2 oy ~

dt 2 m 2 m (6)
~ 1 pSApCrag (M) v3—aigva)
2 m ’
d 1 pSCo M. 02 Jwvs ! p5G, (M. 022 o, ~
dt 2 2 m 2 m
()
1 pSAPGrag(M - 01 Va-a3vy) ~
2 m ’
d 1pSCpM,02)ws 1 psc (M,a?p?aq
dt 2 m 2 m (8)
1 PSAPCrag(M Ny Vo—ap vp).
2 m '

2

- equation of yaw of repose of a projectile

21 pviu —viu
xPlV2 g8 ™ Va g 2

oy = ; )
pSACy, (M ,OLZ )v4
d d
21 plVv3—-U—Vy—U3
dt dt )
Ao = , (10)
pSACy, (M , OLZ)V4
d d
21 plvi—Up—Vo—Ug
dt dt
a3 = , (11)
pSdCy (M , ocz)v4
where W =Vi+W, U =VotWy,  Ug=V3+Wis-

components of the projectile's flight velocity relative to

the Earth's surface; W, Wo, W3 — components of wind
speed relative to the Earth's surface.

»Z
Fig. 2. Orientation of coordinate systems according
to the STANAG 4355 standard
If we square equations (9)-(11) and sum them, we

obtain the equation for the square of the modulus of the
angle of attack

4I2p2 (v gu -V iu )Z{v gu —V. gu j2+(v iu -V gu Jz
X 24T Vg2 3t 1 V18 3t 27 V2 g8

o =ocf+oc%+oc§=

2
nd . . .
where S, == midsection area (cross-section of

the projectile).

The system of differential equations MPMTM (6)-
(11) is implicit because the principal derivatives Ui
simultaneously enter into different equations, which
significantly complicates their numerical solution. In
works [16-18], a variant of reducing this system to an
explicit form is proposed under the assumption that the
projectile is described only by linear aerodynamic
coefficients, with the exception of the drag coefficient.
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p2s2d2\vBcy (M,ocz)

: (12)

This significantly simplifies the calculation of projectile
flight trajectories and allows for significant progress in
the current problem of identifying linear aerodynamic
coefficients [20]. However, as experimental studies
conducted in the 1960s and 1970s have shown, many
projectiles have significant nonlinear aerodynamic
coefficients in addition to the drag coefficient [1].

Solving algebraically the system of equations
(6)-(11) with respect to Ul, Uz,Ug, 04, Olp, 03, in the
Maple software environment, we obtain in explicit form
the system of differential-algebraic equations:
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Pglk V2 [CE(M !0‘2)' xPVAVI-V3 CL('V' 'QZ)CM ('V' laz}ij4+V1V2 IOOlZCmag('V')(mV2 Cwm (M .a2)+ P1xCrnag(M ))] 13
VZ(CE(M ,az)l)%pz v2+d2(mv2 Cwm (M , a2)+ P?1,Crag(M ))) ,

d pSCp (M, 0?) W,
_u2 = —

dt 2m
9 V3 12p? v? CE(M ,a2)+d 2(mv4 Cwm (M ,a2)+vg P?1Crag(M )va4 Cwm (M 102)+ p*1,Crnag(M ))] a4
vz(cE(M,a2)|3p2v2+d2(musz (M,a2)+ P?1,Crnag(M ))) |
d  pSCp(M,0®)ws
P E—
pgly Vo3 CE(M ,az)lxpv2+ vch(M ,asz (M,az)dmv4+v2v3 deCmag(M)(mv2 Cwm (M ,a2)+ pZIXCmag(M))]_
VZ(CE(M ,ocz)l)%pzv2+d2(mv2 Cum (M ,a2)+ pZIXCmag(M))) ’
(15)
- 2mpgl 4 [vyv, pl XCL(M ,ocz)— d vg(m v2Cy (M ,a2)+ P?1xCrag (M ))] _ 16)
1= :
pS VZ[CE(M ,ocz)l)%pz v2+d2(mv2 Cm (M ,a2)+ pZIXCmag (M ))
ap = 2mp2glf(v12+v§b_(M,oc2) ; an
pS VZ[CE(M ,onz)l)%p2 v2+d2(mv2 Cwm (M ,a2)+ P?1,Crnag(M ))]
o 2Pl |VaV3 pIXCL(M ,a2)+d vl(mVZCM (M ,a2)+ P?1,Cryag(M ))] _ 18)
i pS VZ[CE(M ,a2)|3p2v2+d2(mvsz (M ,a2)+ P?1,Cnag (M ))] |
and the equation for the square of the modulus of the angle of attack
o? =0L12+0L%+0L§ = 4m2p292I3(V12+V§) (19)

The system of equations (13)-(18) is an explicit
system of differential-algebraic equations, which takes
into account all possible variants of the dependence of
aerodynamic coefficients on the square of angle of
attack modulus. Numerous methods for solving
differential-algebraic equations are developed in more
depth than for solving implicit differential equations.
Therefore, with the availability of an appropriate set of
linear and nonlinear aerodynamic coefficients, the
system of equations (13)-(15) with equations (19) and
(2) allows us to calculate the main parameters of the
projectile flight: trajectories, projectile rotation speed,

dt

pS VZ[CE(M ,a2)| 3 p2 v+ dz(mV2 CEA (M , (12)4' pzlxcmag(M ))]

(d

{ d
2m vi— U +Vy

and the square angle of attack modulus, which are
necessary for the design, modeling, and practical use of
its ballistic characteristics.

3. Reduction of the system of differential
equations of the MMPM to a system of algebraic
expressions for identifying the aerodynamic
coefficients of the projectile. Let us solve algebraically
the system of equations (13)-(15), taking into account

equations (19) and (2), relative to Cp, C_, Cmag,

Cspina CM and obtain the following dependences of
the aerodynamic coefficients:

d
—Uy+g [+V3—U
at 2 gj 34t 3}

CD(M,aZ)z

pSv3

dmg vz[vldu3 —-V3 dul}
dt dt

; (20)

(21)

2 B 2

dt dt
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d V¥ (. d a V|
U]_—Vlal,lg + V3EU2—VZEU3
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g| vqv iU —(v2+v2)iu + VoV iU
Cmag(M) mv2 1v2 dt 1 1 3 dt 2 2V3 dt 3

2 I 2 2 2 2
CM (M,Q, ) xP (Vzdul—vldU2j +(V3§tU1—V1dU3j +(V3;U2—V2dU3)

2 ol d d ) d d ) d d )
4l p vzaul—vlauz +v3au1—vlau3 +v3au2—vzau3

-1 (22

dt dt

Solving the equation of rotation of the projectile
around its polar axis (2) with respect to the aerodynamic

coefficient Cgpin, we obtain

8IX%p

Coyin(M )= ———,
spm( ) Ttpd4Vp
It is worth noting that the obtained system of
equations (20)-(24) is equivalent to the system of
equations (13)-(15), (19) and (2). In addition, we note
an important circumstance, the left-hand sides of
expressions (21)-(23) indicate that in MPMTM one
should “painlessly” introduce the lift force and Magnus

(24)

force normalized by the coefficient Cum, and also
replace the square of the nutation angle modulus by

OLZCI%A . This fact was noted earlier in works [17, 18].
Let us pay special attention to the fact that the
right-hand sides of expressions (20)-(24) depend, with
the exception of the projectile rotation speed p, only on
the trajectory parameters, which can be measured
experimentally, for example, using a radar. Thus,
recording the flight coordinates of the projectile

X(t), Y(t), Z(t), it is possible to obtain from them (for
example, by approximating them by smooth functions)
the readings of the projectile flight speed values
Vl(t), Vz(t), Vg(t), and similarly, the components of its
acceleration. Using meteorological data, taking into
account the coordinates of the projectile's flight, it is

easy to calculate the air density p(t) as well as the
Mach number M(t) on the trajectory. As for the

projectile rotation speed p(t) it can also be restored

from the trajectory data listed above [21].

Using expressions (20)-(24) and substituting into
them the readings of the values of the parameters listed
above, we obtain the readings of the desired aerodynamic
coefficients and the squares of the modulus of the
projectile's angle of nutation.

Conclusion

The article presents procedures for equivalent
transformations of a system of equations generalized
relative to the standardized STANAG 4355 MMPM. An
equivalent initial differential-algebraic system of
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0252428

equations was obtained, which, given the appropriate set
of linear and nonlinear aerodynamic coefficients, allows
calculating the main parameters of the projectile's flight
with the same accuracy, but with lower computational
resource consumption. By solving the algebraically
obtained system with respect to the aerodynamic
coefficients included in it, a system of fairly simple,
accurate explicit expressions for their identification is
obtained.

A system of accurate explicit expressions for
identifying linear and nonlinear aerodynamic coefficients
in further research will allow analyzing the performance
of the identification method, assessing the errors of the
method, and significantly accelerating the process of
identifying both linear and nonlinear aerodynamic
coefficients and calculating nutation angles from
trajectory data.
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ITEHTADIKAIIS HEJTHEUHUX AEPOJIUHAMIYHUX KOE®IIIIEHTIB CHAPSIJIA HA OCHOBI
MOJUPIKOBAHOT MOJIEJII MATEPIAJIBHOI TOYKH

I'pabuax B.I., Kocoros A.1O., I'paduax B.B.

Hns niosuwjents egexmusHocmi po3paxyHKy mpaeKmopii Nonbomy CHApaod HA OCHOBI MAMEMAmMuYHUX Mooenell, ujo
ONnUCYIOMb NPOCMOPOBULL PYX CHAPAOA 6 NOGimpi, 20CmMpo CMOimb NUMAHHA GUSHAYEHHA [HOUGIOYANIbHUX AepOOUHAMIYHUX
Koeghiyienmie cHapsoa i3 3a0anor0 mouuicmio. B ocHogi noOyooeu cyyacHux mamemamuyHux mooenel NoabOmy CHApsAod
noxknadenull HabaudiceHull nioxio, AKUll OMpumas Ha3ey MAIOKYMOB020 HAOIUICEHHA. 3a maxum NiOXo00M aepoouHamiuni
Koegiyicnmu poskradaroms 6 psao Teinopa 3a Kymom Hymayii i ympumyromocsa auuie JTiHIUHI UleHU po3Kaady, wo 003807158€
CYMmeEBO CHPOCMUMY MAMEMAMU4HI MOOei NOTbOMY CHAPAOQ, ajle 3HAYHO NOZIPULYE MOYHICMb PO3PAXYHKY MPAEKMOPIll 1020
nonvomy. Hatibinew npudamnoro Ol 6U3HAYEHHs AEPOOUHAMIYHUX KOoeiyicHmie cHapsioa € MOOUIKogana Mooelsb
MamepianvHoi mouku, K mamemamuuna mooens nomwomy chapsoa (STANAG 4355 (Edition 3)). B cmammi npedcmasneni
npoyeoypu nepemeopents MoOUupiKoeaHoi Mooeni Mamepianohoi mouku 00 cucmemu OUupepeHyianbHo-aneedpaidHux pigHAHb
HAOauux y sI6HOMY Guisidi, KA, 34 HAA6HOCMI 8ION0GIOH020 HAOOPY NIHIUHUX [ HENiHIUHUX AepOOUHAMIYHUX KoegiyicHmis,
00360715€ 0OYUCTIOBAMU OCHOBHI napamempu NOIbONY CHAPAOA 3 MeHWumMu obyucuosaibhumu pecypcamu. Ompumaro
ananimuyni eupasu ons ioenmugikayii aepoOuHamiyHux Koegiyicnmie cunu 10606020 onopy, nionimansrol cunu, cunu Maenyca,
2aCiHHS WBUOKOCTE 00epManHsi CHApPAOd, 1020 NEPEKUOAIbHO20 MOMEHMY, A MAKONC K8aopama Mooyis Kyma Hymayii chapsoa.
Toxazano, wo 3a ymosu 6i0omoi gyukyii 3miHu 6eruuUHU KYMOBOI WEUOKOCMI GIACHO20 0DEepmMAanHs CHApsod, OMpPUMAaHi
ananimuyni 8upasu QYHKYIOHAILHO 3aNeHCUMb BUKIIOYHO 6i0 NApAMEmpis, Wo OMPUMYIOMbCA 34 OAHUMU 308HIUHbO-
MPAEKmMopHUX 8UMiprosans (KOOpOUHam noibomy cHapsada ma ix NOXIOHUX).

Knrouoegi cnosa: cnapso, aepoounamiyna cuaa, THIUHL ma HeliHIuHI aepoOUHAMIYHT KoeiyieHmu, MamemamuyHa Mooeny,
Mooughixosana mooenn, i0eHmugixayis, napamempu HOILOMY, HYMayis.
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