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GENERALISED SURVIVABILITY MODEL FOR ARMOURED WEAPONS AND EQUIPMENT 

. Stakh, R. Sidor, D. Khaystov, Ya. Khaystov, . Kyrychuk, V. Mudryk, Yu. Nastishin  

Today, there is no single, standardized approach to quantifying the survivability of BTOT samples. The survivability 
models available in the literature differ in the number of components that define the essence of the concept of survivability, 
depending on the type of military equipment and conditions of its use. The analysis of the literature shows that the following 
components of the survivability of BTOT include at least the following: 1) secrecy, 2) ability to eliminate the threat by own 
means, 3) security, 4) recoverability, 5) mobility, 6) resistance to overturning, 7) resistance to spontaneous operational damage 
or own defects. In order to take into account, the contribution of survivability components to the overall survivability of BTOT, 
the paper develops the theoretical basis for their classification as random additive/multiplicative statistical events. The proposed 
step-by-step algorithm for classifying survivability components as random events makes it possible to determine the rule by 
which their probabilities are combined into the overall survivability indicator. In the available information sources, the above 
seven components of survivability are considered in various combinations, but the simultaneous consideration of all seven 
components has not yet been carried out. Moreover, an algorithm for taking into account new components of resilience, if any, 
remains to be developed. This paper is devoted to the development of a generalized model for assessing durability, taking into 
account the seven known durability components and with the possibility of introducing new components based on the 
classification of durability components as random events. The proposed generalized model of sample survivability is developed 
in two stages. The first stage is to create a basic survivability model that takes into account the seven generally accepted 
components. At the second stage of developing the generalized model, we propose a new survivability component, which we call 
threat activity, and use its example to illustrate how new components can be added to the basic model. To quantify the 
effectiveness of the resilience model and the efficiency of innovative measures to improve specific resilience components, we 
propose appropriate quantitative indicators. 

Keywords: survivability of armoured weapons and equipment; operational and combat survivability of military equipment; 
components of military equipment survivability; additive and multiplicative random events. 
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IDENTIFICATION OF NONLINEAR AERODYNAMIC PROJECTILE 
COEFFICIENTS BASED ON A MODIFIED POINT MASS TRAJECTORY MODEL 

 
To increase calculation of projectile flight trajectories effectiveness based on mathematical models which 

describe the spatial movement of the projectile in the air, a pressing question it is relevant to determine individual 
aerodynamic projectile coefficients with specified accuracy. The construction of modern mathematical models of 
projectile flight is based on an approximate approach which is called the small-angle approximation. According to 
this approach, the aerodynamic coefficients are expanded in a Taylor series in terms of the angle of attack and only 
the linear terms of the expansion are retained, which allows to significantly simplify the mathematical models of the 
projectile's flight, but considerably worsens the accuracy of calculating its flight trajectories. The most suitable for 
determining the aerodynamic coefficients of a projectile is a modified point mass trajectory model, as a 
mathematical model of projectile flight (STANAG 4355 (Edition 3)). The article presents procedures for converting 
a modified point mass trajectory model into a system of differential-algebraic equations provided in the real form, 
which, given the appropriate set of linear and nonlinear aerodynamic coefficients, allows calculating the main 
parameters of the projectile's flight with less computational resources. Analytical expressions were obtained for 
identifying the aerodynamic coefficients of the drag force, lift force, Magnus force, decreasing of the projectile's 
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rotational speed, its overturning moment, and the square of the module of the projectile's angle of attack. It is shown 
that, given a known function of the change in the angular velocity of the projectile's own rotation, the obtained 
analytical expressions functionally depend exclusively on the parameters obtained from external trajectory 
measurements (projectile flight coordinates and their derivatives). 

 
Key words: projectile, aerodynamic force, linear and non-linear aerodynamic coefficients, mathematical 

model, modified model, identification, flight parameters, yaw of repose. 
 

Introduction  
General statement of the problem and analysis 

of the literature. The mathematical basis of external 
ballistics is mathematical models (MM) of the projectile 
flight dynamics which connect the kinematic characteristics 
of the projectile (coordinates, the velocity of the center 
of mass (CM) and its position in space, described by the 
yaw of repose of the projectile axis relative to the 
velocity vector) with the forces acting on the projectile.  

The most accurate MM today is considered to be the 
so-called model with six degrees of freedom – 6DOF [1, 
2]. 6DOF model, based on the theory of motion of a 
perfectly rigid body, developed by Euler in the 18th 
century, appeared in ballistics at the beginning of the last 
century and continues to develop to this day. In the theory 
of motion of a perfectly rigid body it is assumed that all 
forces and moments acting on the body are known. 
However, in external ballistics, one of the most important 
unsolved problems is the measurement (finding) of 
individual (for each type of projectile) aerodynamic 
coefficients which are included in the equation of 
projectile flight dynamics. It should be noted that all 
modern MMs are traditionally based on the so-called 
small-angle approximation, when it is assumed that the 
projectile is stabilized in flight and, accordingly, its 
angles of attack are quite small. The angle of attack is 
formed during the movement of the projectile in the gun 
barrel, and is caused by the mismatch of the longitudinal 
axis of the projectile with the axis of symmetry of the gun 
barrel, as well as the eccentricity (imbalance) of the 
weight of the projectile (Fig. 1).  

 

 
 

Fig. 1. Projectile motion on a trajectory 
– angle of attack of the projectile;  
v  –  projectile velocity vector 

 

The nature and parameters of yaw of repose and 
their effect on the flight of projectiles are determined by 
the level of initial disturbances: initial angles and 
angular velocities of the projectile's yaw of repose 
oscillations.  

It is assumed [1-3] that the forces and moments 
acting on a projectile moving in air depend only on the 
Mach number (M) and the square of angle of attack 2. In 
addition, this dependence can be represented (expanded) 
in the form of a Taylor series in powers 2, i.e.  

. 
Limited to n terms, the coefficients of which are 

called aerodynamic coefficients. This approach reveals 
the existing “weakness” of the aforementioned models, 
since a priori the number of retained coefficients of each 
force or moment is unknown and it is impossible to 
clearly form the MM for a given projectile. To 
overcome this “weakness”, it would be more convenient 

to identify not aerodynamic coefficients )(MC , but 

aerodynamic forces (moments) and then find 
aerodynamic coefficients from them.  

Determining the aerodynamic coefficients of a 
projectile  is  a  key  stage  in  the  design,  modeling,  and  
practical use of its ballistic characteristics. Linear 
coefficients describe aerodynamic drag and lift at low 
angles of attack, while nonlinear coefficients take into 
account more complex phenomena occurring at high 
angles of attack, including flow disruption and vortex 
formation. Experimental determination of these 
coefficients is a complex task that requires the use of 
specialized methods and equipment.  

The choice of the appropriate method is 
determined by the required accuracy, the available 
equipment and the range of investigated parameters. 
Nowadays most common methods are:  

ballistic (external-trajectory) methods;  
aerodynamic research methods using wind tunnels; 
mathematical (numerical) methods. 
The wind tunnel balancing method is less accurate 

for determining linear coefficients, and has certain 
limitations at large nutation angles. The ballistic 
method, as a free-flight projectile method, is suitable for 
studying nonlinear effects, especially under real flight 
conditions, but its accuracy may be limited by both the 
accuracy of experimental data and identification 
methods. However, only the experimental method of 
free flight of a real projectile can substantiate the 
accuracy of the results obtained by any methods. 
Currently, the most popular is a combination of several 
methods, for example, the use of mathematical methods 
such as Computational Fluid Dynamics (CFD), wind 
tunnel data to compare free flight and CFD results, 
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which provides the ability to assess accuracy and 
reliability [4-14]. However, this approach has a number 
of significant drawbacks, related both to its extreme 
mathematical complexity and to the heterogeneity of the 
source data. 

In many of the aforementioned works, the 
identification of aerodynamic coefficients is carried out 
based on the 6DOF model, which contains a large 
number of aerodynamic coefficients - linear and 
nonlinear, which significantly complicates the 
identification procedure. It is more appropriate to start 
the construction and adjustment of effective 
identification methods on the basis of simpler 
mathematical models of projectile flight dynamics. 

The main model for calculating the flight 
trajectory of spin-stabilized projectiles in external 
ballistics is the use of a simpler, compared to the 6DOF 
model, modified point mass trajectory model 
(MPMTM) standardized in STANAG 4355, which is 
also known as the four-degree-of-freedom model, or the 
R. Leske model [1, 2]. There are several variants of 
MPMTM in explicit and implicit form [16-19]. 
MPMTM in explicit form allows us to obtain equivalent 
equations of projectile flight dynamics, which contain 
only trajectory characteristics and do not contain 
characteristics of the angular motion of the projectile. In 
this case, it is possible to construct a fairly simple and 
effective method for identifying linear aerodynamic 
coefficients [20]. However, it is known that in the 
presence of nonlinear aerodynamic coefficients, reducing 
the MPMTM to an equivalent explicit form is usually a 
difficult task.  

Therefore, the aim of the article is to develop an 
effective approach to identifying nonlinear aerodynamic 
coefficients taking into account the new implicit form of 
MPMTM, equivalent to the original system of 
equations. On its basis, we obtain algebraic expressions 
suitable for identification of nonlinear aerodynamic 
coefficients and the modulus of nutation angles 
according to the measured trajectory data. 

Main body 
1. Reduction of the system of differential 

equations of MPMTM to an equivalent system of 
differential-algebraic equations. In general form, 
MPMTM contains the following differential equations 
[15]: 

- equation of motion of the projectile's CM   

;gMFLFDFu mmm               (1) 

- equation of rotation of a projectile around its 
polar axis    

                       
x

spin

I
Cpd

8
v4

,                       (2)  

with initial conditions  

dk
p

c

0
0

v2 , 

where m – projectile mass; u – the velocity vector of the 
projectile relative to the Earth's frame of reference;   
DF – drag force; LF – lift (normal) force; MF– 
Magnus force;  – angular velocity of the projectile (its 
own rotational speed); g – acceleration of gravity; – 
acceleration from the Coriolis force, which is caused by 
the Earth's rotation; spinC

 
– the decreasing of the 

projectile's rotational speed;  – polar moment of 

inertia of the projectile; ck  – relative length of the gun 
barrel rifling stroke in calibers; d  – diameter (caliber) 

of the projectile; – air density; 0v – initial velocity 

of the projectile; 0p – the angular speed of rotation of 
the projectile at the cross section of the gun barrel; v – the 
velocity vector of the projectile in the terrestrial coordinate 
system relative to the air, that is determined by the 
components: 

.vvvv

;v,v,v
2
3

2
2

2
1

221v
                          (3) 

Here and further in the text of the article, we will 
adopt the names of the components of the aerodynamic 
force (moments) in accordance with STANAG 4355 
(Edition 3) [15], and we will also use bold letters to 
denote vectors, and standard letters for scalars.  

The drag force and lift force are expressed in 
vector form as [15]: 

,
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8
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vMF
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vDF
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pCd

d

d

               (4) 

where D , L , fmagC  – coefficients of drag force, 

lift force and Magnus force, respectively. 
In vector form, the equation of the angle of attack 

of the projectile, which is included in the expressions of 
aerodynamic forces (4), is defined as [15] 

423 v

8

20 MM

x

CCd

pI uv
,          (5) 

where 22
2, MMM CCMC , 2

2, MM CC – 

linear and quadratic coefficients of the projectile 
overturning moment, respectively, with initial conditions 
 

0
0
0

0 . 
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The aerodynamic force coefficients D , L  
vary depending on the size of the angle of attack of the 
projectile.  

Thus, the drag coefficient is usually approximated 
by the expression 

2
0

2
2, DDD MC , 

where 0D , 2D – linear and drag force coefficients, 

respectively. 
The lift coefficient is also characterized by 

nonlinear behavior and depends on the magnitude of the 
angle of attack of the projectile. 

22
2, LLL MC

, 

where L , 
2L – linear and quadratic coefficients of 

lifting force, respectively. 
When considering Magnus forces, one is usually 

limited to considering only the linear term.  
The generalized original system of equations 

MMPM (1), (5) in scalar form in terms of components 
in the Cartesian terrestrial coordinate system (Fig. 2) 
will take the form:   

- equation of motion of the projectile's CM.  
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- equation of yaw of repose of a projectile   
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where 111 v wu , 222 v wu , 333 v wu – 
components of the projectile's flight velocity relative to 

the Earth's surface; 321 ,, www – components of wind 
speed relative to the Earth's surface. 
 

 
Fig. 2. Orientation of coordinate systems according  

to the STANAG 4355 standard 
 
If we square equations (9)-(11) and sum them, we 

obtain the equation for the square of the modulus of the 
angle of attack 
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where 
4

2dS – midsection area (cross-section of 

the projectile). 
The system of differential equations MPMTM (6)-

(11) is implicit because the principal derivatives iu
simultaneously enter into different equations, which 
significantly complicates their numerical solution. In 
works [16-18], a variant of reducing this system to an 
explicit form is proposed under the assumption that the 
projectile is described only by linear aerodynamic 
coefficients, with the exception of the drag coefficient. 

This significantly simplifies the calculation of projectile 
flight trajectories and allows for significant progress in 
the current problem of identifying linear aerodynamic 
coefficients [20]. However, as experimental studies 
conducted in the 1960s and 1970s have shown, many 
projectiles have significant nonlinear aerodynamic 
coefficients in addition to the drag coefficient [1]. 

Solving algebraically the system of equations    

(6)-(11) with respect to 321321 ,,,,, uuu , in the 
Maple software environment, we obtain in explicit form 
the system of differential-algebraic equations: 
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and the equation for the square of the modulus of the angle of attack 

  .
,vv,v

vv4
22222222222

2
3

2
1

2222
2
3

2
2

2
1

2

MCIpMCmdpIMCS

Igpm

magxMxL

x                 (19)

  
The system of equations (13)-(18) is an explicit 

system of differential-algebraic equations, which takes 
into account all possible variants of the dependence of 
aerodynamic coefficients on the square of angle of 
attack modulus. Numerous methods for solving 
differential-algebraic equations are developed in more 
depth than for solving implicit differential equations. 
Therefore, with the availability of an appropriate set of 
linear and nonlinear aerodynamic coefficients, the 
system of equations (13)-(15) with equations (19) and 
(2) allows us to calculate the main parameters of the 
projectile flight: trajectories, projectile rotation speed, 

and the square angle of attack modulus, which are 
necessary for the design, modeling, and practical use of 
its ballistic characteristics.  

3. Reduction of the system of differential 
equations of the MMPM to a system of algebraic 
expressions for identifying the aerodynamic 
coefficients of the projectile. Let us solve algebraically 
the system of equations (13)-(15), taking into account 

equations (19) and (2), relative to DC , LC , magC , 

spinC , MC , and obtain the following dependences of 
the aerodynamic coefficients: 
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Solving the equation of rotation of the projectile 

around its polar axis (2) with respect to the aerodynamic 
coefficient  spinC , we obtain 

,
v

8

4 pd

p
dt
dI

MC
x

spin                     (24) 

It is worth noting that the obtained system of 
equations (20)-(24) is equivalent to the system of 
equations (13)-(15), (19) and (2). In addition, we note 
an important circumstance, the left-hand sides of 
expressions (21)-(23) indicate that in MPMTM one 
should “painlessly” introduce the lift force and Magnus 

force normalized by the coefficient MC , and also 
replace the square of the nutation angle modulus by 

22
MC . This fact was noted earlier in works [17, 18]. 
Let us pay special attention to the fact that the 

right-hand sides of expressions (20)-(24) depend, with 
the exception of the projectile rotation speed p, only on 
the trajectory parameters, which can be measured 
experimentally, for example, using a radar. Thus, 
recording the flight coordinates of the projectile 

tztyt ,, , it is possible to obtain from them (for 
example, by approximating them by smooth functions) 
the readings of the projectile flight speed values 

ttt 321 v,v,v , and similarly, the components of its 
acceleration. Using meteorological data, taking into 
account the coordinates of the projectile's flight, it is 

easy to calculate the air density t ,  as  well  as  the  

Mach number tM  on  the  trajectory.  As  for  the  

projectile rotation speed tp , it can also be restored 
from the trajectory data listed above [21]. 

Using expressions (20)-(24) and substituting into 
them the readings of the values of the parameters listed 
above, we obtain the readings of the desired aerodynamic 
coefficients and the squares of the modulus of the 
projectile's angle of nutation. 

Conclusion 
The article presents procedures for equivalent 

transformations of a system of equations generalized 
relative to the standardized STANAG 4355 MMPM. An 
equivalent initial differential-algebraic system of 

equations was obtained, which, given the appropriate set 
of linear and nonlinear aerodynamic coefficients, allows 
calculating the main parameters of the projectile's flight 
with the same accuracy, but with lower computational 
resource consumption. By solving the algebraically 
obtained system with respect to the aerodynamic 
coefficients included in it, a system of fairly simple, 
accurate explicit expressions for their identification is 
obtained.  

A system of accurate explicit expressions for 
identifying linear and nonlinear aerodynamic coefficients 
in further research will allow analyzing the performance 
of the identification method, assessing the errors of the 
method, and significantly accelerating the process of 
identifying both linear and nonlinear aerodynamic 
coefficients and calculating nutation angles from 
trajectory data. 
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